화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.2, 320-327, February, 2017
Effect of surface composition of Fe catalyst on the activity for the production of high-calorie synthetic natural gas (SNG)
E-mail:
An Fe2O3 catalyst was applied to the production of high-calorie synthetic natural gas (SNG). With this catalyst, the product distribution changed as the surface composition of the Fe2O3 catalyst changed. The effect of these changes on the catalytic activity was investigated. The active phases of the Fe2O3 catalyst were a mixture of low-carbon FeCx and Fe3C, which was maintained for 10 h, accompanied by the regeneration of Fe3O4. The surface Fe concentration increased after 10 h reaction, and this increased the CO conversion. In addition, the amounts of adsorbed C2H4 and C3H6 increased, which resulted in an increase in carbon chain growth. The surface concentration of oxygen also increased due to the regeneration of Fe3O4, thus reducing the C3H6 adsorption strength; in contrast, C2H4 adsorption increased, resulting in an enhanced paraffin-to-olefin (p/o) ratio for C2 hydrocarbons and reduced p/o ratio for C3 hydrocarbons.
  1. Statistical Review of World Energy, British Petroleum (2015).
  2. The Paris Agreement, in: The Conference of the Parties Twentyfirst Session (COP 21), United Nations Framework Convention on Climate Change (UNFCCC) (2015).
  3. World Energy Outlook 2015, International Energy Agency (2015).
  4. Lower and higher heating values of gas, liquid and solid fuels, Biomass Energy Data Book, U.S. Department of Energy, Oak Ridge National Laboratory (2011).
  5. NIST Chemistry Webbook, National Institute of Standards and Technology, Washington, D.C. .
  6. Kume T, Ohashi T, Gas quality variation impact on gas appliances in Japan: A status report, 25th World Gas Conference, Kuala Lumpur, Malaysia (2012).
  7. Nishiyama Y, Energy in Japan, Credit Suisse (2012).
  8. Heat content of natural gas consumed, U.S. Energy Information Administration (EIA).
  9. Korchemkin M, Gazprom unlikely to win a price war, East European Gas Analysis (EEGA) (2016).
  10. Scale Does Matter, Gazprom (2012).
  11. Koh CA, Chem. Soc. Rev., 31, 157 (2002)
  12. Zhang QW, Li XH, Asami K, Asaoka S, Fujimoto K, Catal. Today, 104(1), 30 (2005)
  13. Zhang Q, Li X, Asami K, Asaoka S, Fujimoto K, Catal. Lett., 102(1-2), 51 (2005)
  14. Ge QJ, Li XH, Kaneko H, Fujimoto K, J. Mol. Catal. A-Chem., 278(1-2), 215 (2007)
  15. Ge OJ, Lian Y, Yuan XD, Li XH, Fujimoto K, Catal. Commun., 9, 256 (2008)
  16. Ge QJ, Tomonobu T, Fujimoto K, Li XH, Catal. Commun., 9, 1775 (2008)
  17. Ma XG, Ge QJ, Fang CY, Ma JG, Xu HY, Fuel, 90(5), 2051 (2011)
  18. Zhang QW, Ma T, Zhao M, Tomonobu T, Li XH, Catal. Sci. Technol., 6, 1523 (2016)
  19. Li YW, He DH, Cheng ZX, Su CL, Li JR, Zhu QM, J. Mol. Catal. A-Chem., 175(1-2), 267 (2001)
  20. Li YW, He DH, Yuan YB, Cheng ZX, Zhu QM, Fuel, 81(11-12), 1611 (2002)
  21. Li YW, He DH, Zhu QM, Zhang X, Xu BQ, J. Catal., 221(2), 584 (2004)
  22. Li YW, He DH, Zhu ZH, Zhu QM, Xu BQ, Appl. Catal. A: Gen., 319, 119 (2007)
  23. Zhu ZH, He DH, Fuel, 87(10-11), 2229 (2008)
  24. Ge SH, He DH, Li ZP, Catal. Lett., 126(1-2), 193 (2008)
  25. Zhang RJ, Liu HM, He DH, Catal. Commun., 26, 244 (2012)
  26. Galvis HMT, de Jong KP, ACS Catal., 3, 2130 (2013)
  27. Galvis HMT, Bitter JH, Khare CB, Ruitenbeek M, Dugulan AI, de Jong KP, Science, 335(6070), 835 (2012)
  28. Galvis HMT, Bitter JH, Davidian T, Ruitenbeek M, Dugulan AI, de Jong KP, J. Am. Chem. Soc., 134(39), 16207 (2012)
  29. Kang SH, Bae JW, Prasad PSS, Jun KW, Catal. Lett., 125(3-4), 264 (2008)
  30. Dry ME, Stud. Surf. Sci. Catal., 533 (2004)
  31. Enger BC, Holmen A, Catal. Rev.-Sci. Eng., 54(4), 437 (2012)
  32. Inui T, Sakamoto A, Takeguchi T, Ishigaki Y, Ind. Eng. Chem. Res., 28, 427 (1989)
  33. Lee YH, Kim H, Choi HS, Lee DW, Lee KY, Korean J. Chem. Eng., 32(11), 2220 (2015)
  34. Lee YH, Lee DW, Kim H, Choi HS, Lee KY, Fuel, 159, 259 (2015)
  35. Gnanamani MK, Hamdeh HH, Shafer WD, Sparks DE, Davis BH, Catal. Lett., 143(11), 1123 (2013)
  36. Ding MY, Yang Y, Wu BS, Xu J, Zhang CH, Xiang HW, Li YW, J. Mol. Catal. A-Chem., 303(1-2), 65 (2009)
  37. de Smit E, Weckhuysen BM, Chem. Soc. Rev., 37, 2758 (2008)
  38. Kolis JW, Holt EM, Shriver DF, J. Am. Chem. Soc., 105, 7307 (1983)
  39. Wu WC, Wu ZL, Liang CH, Chen XW, Ying PL, Li C, J. Phys. Chem. B, 107(29), 7088 (2003)
  40. Liu YF, Luo JJ, Girleanu M, Ersen O, Pham-Huu C, Meny C, J. Catal., 318, 179 (2014)
  41. Logdberg S, Lualdi M, Jaras S, Walmsley JC, Blekkan EA, Rytter E, Holmen A, J. Catal., 274(1), 84 (2010)
  42. Lee YH, Lee DW, Lee KY, J. Mol. Catal. A-Chem., 425, 190 (2016)
  43. Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ, NIST X-ray Photoelectron Spectroscopy Database - NIST Standard Reference Database 20, National Institute of Standards and Technology (NIST) (2012).
  44. Jiang F, Zeng L, Li SR, Liu G, Wang SP, Gong JL, ACS Catal., 5, 438 (2015)
  45. Ozbek MO, Niemantsverdriet JW, J. Catal., 317, 158 (2014)
  46. Kuipers EW, Vinkenburg IH, Oosterbeek H, J. Catal., 152(1), 137 (1995)
  47. Van der Laan GP, Beenackers AACM, Catal. Rev.-Sci. Eng., 41(3-4), 255 (1999)