화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.2, 476-483, February, 2017
Fabrication of carbon nanotube-loaded TiO2@AgI and its excellent performance in visible-light photocatalysis
E-mail:
Novel, visible light driven CNTs-TiO2@AgI hybrid materials were synthesized by a simple solvothermaldissolution-precipitation method, during which the acid vapor treated carbon nanotubes (CNTs) as template, AgI as sensitizer and TiO2 as the bridge unified them to form a ternary composite. The morphology and chemical components of as-prepared samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). XRD and XPS characterizations indicated that anatase TiO2 and crystal AgI co-existed in the composite. HRTEM demonstrated CNTs were decorated with well-dispersed AgI and TiO2 nanoparticles (NPs), and TiO2 had an intimate connection with both AgI and CNTs. Diffusive reflectance UV-vis spectroscopy of CNTs-TiO2@AgI nanocomposite was extended to the whole UV-visible region due to adding of CNTs and AgI NPs. Degradation of Rhodamine B (RhB) polluted water using CNTs-TiO2@AgI NPs was carried out under visible light irradiation, and it showed higher degradation efficiency than CNTs-TiO2, TiO2@AgI, and CNTs@AgI NPs. The primary reason for the enhanced photocatalytic property was attributed to the synergic effect in CNTs-TiO2@AgI, which included the good adsorption ability and electrical conductivity of CNTs as well as the intimate connection and hetero-junctions among AgI, TiO2, and CNTs. Meanwhile, the as-prepared hybrid materials can be easily separated and reclaimed from the liquid phase, and the recycling tests indicated CNTs-TiO2@AgI had renewable performance.
  1. Fujishima A, Zhang XT, Tryk DA, Surf. Sci. Rep., 63, 515 (2008)
  2. Di Paola A, Garcia-Lopez E, Marci G, Palmisano L, J. Hazard. Mater., 211, 3 (2012)
  3. Ahmadi M, Amiri P, Amiri N, Korean J. Chem. Eng., 32(7), 1327 (2015)
  4. Zhang H, Fan X, Quan X, Chen S, Yu H, Environ. Sci. Technol., 45, 5731 (2011)
  5. Guan ML, Xiao C, Zhang J, Fan SJ, An R, Cheng QM, Xie JF, Zhou M, Ye BJ, Xie Y, J. Am. Chem. Soc., 135(28), 10411 (2013)
  6. Xiong ZG, Zhao XS, J. Am. Chem. Soc., 134(13), 5754 (2012)
  7. Karunakaran C, Kalaivani S, Vinayagamoorthy P, Mater. Lett., 122, 21 (2014)
  8. Tsukamoto D, Shiraishi Y, Sugano Y, Ichikawa S, Tanaka S, Hirai T, J. Am. Chem. Soc., 134(14), 6309 (2012)
  9. Yadav HM, Kim JS, Pawar SH, Korean J. Chem. Eng., 33(7), 1989 (2016)
  10. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69 (1995) 
  11. Fujishima A, Honda K, Nature, 238, 37 (1972)
  12. Wang Q, Shi XD, Liu EQ, Xu JJ, Crittenden JC, Zhang Y, Cong YQ, Ind. Eng. Chem. Res., 55(17), 4897 (2016)
  13. An C, Jiang W, Wang J, Wang S, Ma Z, Li Y, J. Chem. Soc.-Dalton Trans., 42, 8796 (2013)
  14. Chen XB, Burda C, J. Am. Chem. Soc., 130(15), 5018 (2008)
  15. Ma YF, Zhang JL, Tian BZ, Chen F, Wang LZ, J. Hazard. Mater., 182(1-3), 386 (2010)
  16. Fan WQ, Lai QH, Zhang QH, Wang Y, J. Phys. Chem. C, 115, 10694 (2011)
  17. Yao Y, Li G, Ciston S, Lueptow RM, Gray KA, Environ. Sci. Technol., 42, 4952 (2008)
  18. Kim S, Lim SK, Appl. Catal. B: Environ., 84(1-2), 16 (2008)
  19. Yu DD, Bai J, Liang HO, Ma TF, Li CP, J. Mol. Catal. A-Chem., 420, 1 (2016)
  20. Ullah K, Ullah A, Aldalbahi A, Chung JD, Oh WC, J. Mol. Catal. A-Chem., 410, 242 (2015)
  21. Yen CY, Lin YF, Hung CH, Tseng YH, Ma CC, Chang MC, Shao H, Nanotechnology, 19, 219 (2008)
  22. Yu JG, Ma TT, Liu SW, Phys. Chem. Chem. Phys., 13, 3491 (2011)
  23. Muduli S, Lee W, Dhas V, Mujawar S, Dubey M, Vijayamohanan K, Han SH, Ogale S, Acs Appl. Mater. Inter., 1, 2030 (2009)
  24. Kongkanand A, Dominguez RM, Kamat PV, Nano Lett., 7, 676 (2007)
  25. Lee WJ, Lee JM, Kochuveedu ST, Han TH, Jeong HY, Park M, Yun JM, Kwon J, No K, Kim DH, Kim SO, Acs Nano, 6, 935 (2012)
  26. Hsu CY, Lien DH, Lu SY, Chen CY, Kang CF, Chueh YL, Hsu WK, He JH, Acs Nano, 6, 6687 (2012)
  27. Cargnello M, Grzelczak M, Rodriguez-Gonzalez B, Syrgiannis Z, Bakhmutsky K, La Parola V, Liz-Marzan LM, Gorte RJ, Prato M, Fornasiero P, J. Am. Chem. Soc., 134(28), 11760 (2012)
  28. Wang XW, Yin LC, Liu G, Chem. Commun., 50, 3460 (2014)
  29. Wang HL, Robinson JT, Diankov G, Dai HJ, J. Am. Chem. Soc., 132(10), 3270 (2010)
  30. Xiang QJ, Yu JG, Jaroniec M, Chem. Soc. Rev., 41, 782 (2012)
  31. Huang LH, Wang HJ, Liu YL, Jiao ZB, Shao ZB, Prog. Chem., 22, 867 (2010)
  32. Zhang H, Lv XJ, Li YM, Wang Y, Li JH, Acs Nano, 4, 380 (2010)
  33. Liu G, Yu JC, Lu GQ, Cheng HM, Chem. Commun., 47, 6763 (2011)
  34. Woan K, Pyrgiotakis G, Sigmund W, Adv. Mater., 21(21), 2233 (2009)
  35. Zhou KF, Zhu YH, Yang XL, Jiang X, Li CZ, New J. Chem., 35, 353 (2011)
  36. Hochbaum AI, Yang PD, Chem. Rev., 110(1), 527 (2010)
  37. Hu AG, Liu S, Lin WB, Rsc. Adv., 2, 2576 (2012)
  38. Hoang S, Berglund SP, Hahn NT, Bard AJ, Mullins CB, J. Am. Chem. Soc., 134(8), 3659 (2012)
  39. Wang H, Gao J, Guo TQ, Wang RM, Guo L, Liu Y, Li JH, Chem. Commun., 48, 275 (2012)
  40. Abou Asi M, He C, Su MH, Xia DH, Lin L, Deng HQ, Xiong Y, Qiu RL, Li XZ, Catal. Today, 175(1), 256 (2011)
  41. Vinoth R, Karthik P, Muthamizhchelvan C, Neppolian B, Ashokkumar M, Phys. Chem. Chem. Phys., 18, 5179 (2016)
  42. Liu HS, Wang YH, Li CC, Tai CY, Chem. Eng. J., 183, 466 (2012)
  43. Makiura R, Yonemura T, Yamada T, Yamauchi M, Ikeda R, Kitagawa H, Kato K, Takata M, Nat. Mater., 8(6), 476 (2009)
  44. Wang Q, Shi XD, Xu JJ, Crittenden JC, Liu EQ, Zhang Y, Cong YQ, J. Hazard. Mater., 307, 213 (2016)
  45. Li YZ, Zhang H, Guo ZM, Han JJ, Zhao XJ, Zhao QN, Kim SJ, Langmuir, 24(15), 8351 (2008)
  46. Hu C, Hu XX, Wang LS, Qu JH, Wang AM, Environ. Sci. Technol., 40, 7903 (2006)
  47. Wu DY, Long MC, Surf. Coat. Technol., 206, 1175 (2011)
  48. Li YZ, Zhang H, Guo ZM, Han JJ, Zhao XJ, Zhao QN, Kim SJ, Langmuir, 24(15), 8351 (2008)
  49. Shi H, Chen J, Li G, Nie X, Zhao H, Wong PK, An T, ACS Appl. Mater. Interf., 5, 6959 (2013)
  50. Xu YG, Huang SQ, Ji HY, Jing LQ, He MQ, Xu H, Zhang Q, Li HM, Rsc. Adv., 6, 6905 (2016)
  51. Yang LX, Luo SL, Li Y, Xiao Y, Kang Q, Cai QY, Environ. Sci. Technol., 44, 7641 (2010)
  52. Jiang J, Zhang X, Sun PB, Zhang LZ, J. Phys. Chem. C, 115, 20555 (2011)
  53. An Y, Hou J, Liu ZY, Peng BH, Mater. Chem. Phys., 148(1-2), 387 (2014)
  54. Ming J, Wu YQ, Yu YC, Zhao FY, Chem. Commun., 47, 5223 (2011)
  55. Ebbesen TW, Ajayan PM, Hiura H, Tanigaki K, Nature, 367(6463), 519 (1994)
  56. Xu H, Yan J, Xu YG, Song YH, Li HM, Xia JX, Huang CJ, Wan HL, Appl. Catal. B: Environ., 129, 182 (2013)
  57. Sun W, Li YZ, Shi WQ, Zhao XJ, Fang PF, J. Mater. Chem., 21, 9263 (2011)
  58. Cai L, Xu T, Shen JY, Xiang WX, Mater. Sci. Semicond. Process, 37, 19 (2015)
  59. An Y, Yang L, Hou J, Liu ZY, Peng BH, Opt. Mater., 36, 1390 (2014)
  60. Reddy DA, Choi J, Lee S, Ma R, Kim TK, Rsc. Adv., 5, 67394 (2015)
  61. Shi HX, Chen JY, Li GY, Nie X, Zhao HJ, Wong PK, An TC, Acs Appl. Mater. Inter., 5, 6959 (2013)
  62. Yi JH, Huang LL, Wang HJ, Yu H, Peng F, J. Hazard. Mater., 284, 207 (2015)
  63. Liu JX, Luan YL, An CH, Zhang J, Wang DS, Li YD, Chemcatchem, 7, 2918 (2015)
  64. Joo JB, Zhang Q, Dahl M, Lee I, Goebl J, Zaera F, Yin YD, Energy Environ. Sci., 5, 6321 (2012)
  65. Liu HY, Joo JB, Dahl M, Fu LS, Zeng ZZ, Yin YD, Energy Environ. Sci., 8, 286 (2015)
  66. Fan ZH, Meng FM, Zhang M, Wu ZY, Sun ZQ, Li AX, Appl. Surf. Sci., 360, 298 (2016)