화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.2, 574-579, February, 2017
Comparative experimental study of ethanol-air premixed laminar combustion characteristics by laser induced spark and electric spark ignition
E-mail:
An experimental study of laminar combustion characteristics of ethanol-air premixed mixtures was conducted with different ignition methods, including laser induced spark ignition (LISI) and electric spark ignition (SI) at an initial condition of 358 K temperature and 0.1 MPa pressure. Flame propagation with the two different ignition methods was analyzed and discussed. The laminar flame speed was extrapolated with a nonlinear extrapolation method. Results indicate that the laminar speed of ethanol-air mixtures with LISI is faster than that with SI at lean mixtures, but slower at stoichiometric and rich mixtures. The peak values of the laminar burning velocity for SI and LISI with nonlinear extrapolation are 50.1 cm/s and 47.6 cm/s at the equivalence ratio of 1.1, respectively. Laser-induced spark ignition is able to ignite leaner ethanol-air mixtures.
  1. Meng X, Huang H, Zhang Q, Li C, Cui Q, Korean J. Chem. Eng., 33(4), 1239 (2016)
  2. Qu X, Gong CM, Liu JJ, Cui FY, Liu FH, Fuel, 158, 166 (2015)
  3. Ambros WM, Lanzanova TDM, Fagundez JLS, Sari RL, Pinheiro DK, Martins MES, Salau NPG, Fuel, 158, 270 (2015)
  4. Jeong JS, Jang BU, Kim YR, Chung BW, Choi GW, Korean J. Chem. Eng., 26(5), 1308 (2009)
  5. da Silva R, Cataluna R, de Menezes EW, Samios D, Piatnicki CMS, Fuel, 84(7-8), 951 (2005)
  6. Dirrenberger P, Glaude PA, Bounaceur R, Le Gall H, da Cruz AP, Konnov AA, Battin-Leclerc F, Fuel, 115, 162 (2014)
  7. Costa RC, Sodre JR, Fuel, 89(2), 287 (2010)
  8. Morsy MH, Renew. Sust. Energ. Rev., 16, 4849 (2012)
  9. Bradley D, Sheppard CGW, Suardjaja IM, Woolley R, Combust. Flame, 138(1-2), 55 (2004)
  10. Srivastava DK, Weinrotter M, Iskra K, Ayarwal AK, Wintner E, Int. J. Hydrog. Energy, 34(5), 2475 (2009)
  11. Tihay V, Gillard P, Blanc D, J. Hazard. Mater., 209-210, 372 (2012)
  12. Boker D, Bruggemann D, Int. J. Hydrog. Energy, 36(22), 14759 (2011)
  13. Weinrotter M, Kopecek H, Wintner E, Lackner M, Winter F, Int. J. Hydrog. Energy, 30(3), 319 (2005)
  14. Ma JX, Alexander DR, Poulain DE, Combust. Flame, 112(4), 492 (1998)
  15. Rahman KM, Kawahara N, Tsuboi K, Tomita E, Fuel, 165, 331 (2016)
  16. Xu C, Fang D, Luo Q, Ma J, Xie Y, Optics Laser Technology, 64, 343 (2014)
  17. Tahtouh T, Halter F, Mounaim-Rousselle C, Combust. Flame, 156(9), 1735 (2009)
  18. Varea E, Modica V, Vandel A, Renou B, Combust. Flame, 159(2), 577 (2012)
  19. Kelley AP, Law CK, Combust. Flame, 156(9), 1844 (2009)
  20. Egolfopoulos FN, Hansen N, Ju Y, Kohse-Hoinghaus K, Law CK, Qi F, Prog. Energy Combust. Sci., 43, 36 (2014)
  21. Broustail G, Halter F, Seers P, Moreac G, Mounaim-Rousselle C, Fuel, 106, 310 (2013)
  22. Phuoc TX, Opt. Laser. Eng., 44, 351 (2006)
  23. Chen Z, Combust. Flame, 162(6), 2442 (2015)
  24. Dayma G, Halter F, Foucher F, Mounaim-Rousselle C, Dagaut P, Energy Fuels, 26(11), 6669 (2012)
  25. Bradley D, Lawes M, Mansour MS, Combust. Flame, 156(7), 1462 (2009)
  26. Liao SY, Jiang DM, Huang ZH, Zeng K, Cheng Q, Appl. Therm. Eng., 27, 374 (2007)
  27. Sileghem L, Alekseev VA, Vancoillie J, Nilsson EJK, Verhelst S, Konnov AA, Fuel, 115, 32 (2014)
  28. Chen Z, Combust. Flame, 157(12), 2267 (2010)
  29. Yu H, Han W, Santner J, Gou XL, Sohn CH, Ju YG, Chen Z, Combust. Flame, 161(11), 2815 (2014)