화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.55, No.1, 40-47, February, 2017
다중벽 탄소나노튜브의 분진폭발 특성
Dust Explosion Characteristics of Multi-Walled Carbon Nano Tube
E-mail:
초록
가연성 분진이 제조·취급되는 공정에서의 분진폭발 위험성은 항상 존재한다. 그러나 산업현장에서 취급되는 분진에 대한 분진폭발 특성 정보는 아주 미흡한 실정으로 사업장에서는 화학사고 예방대책 수립에 어려움을 겪고 있다. 본 연구에서는 입도분포가 다른 두 종류의 다중벽 탄소나노튜브(MWCNT)에 대한 분진폭발 특성을 실험적으로 조사하였으며, NFPA 499 Code를 적용하여 MWCNT 제조·취급 공정의 분진폭발 위험장소 구분을 검토하였다. 그 결과 평균입도가 124.2 μm인 MWCNT 1의 Pmax, Kst, LEL, MIE, 및 MIT는 각각 6.3 bar, 56 bar·m/s, 125 g/m3, 1000 mJ 초과 및 650 °C 초과로 나타났다. 평균입도가 293.5 μm인 MWCNT 2의 Pmax, Kst, LEL, MIE, MIT는 각각 6.2 bar, 42 bar·m/s, 100 g/m3, 1000 mJ 초과 및 650 °C 초과로 나타났다. NFPA 499 Code에 따른 MWCNT 1, 2의 폭발강도와 점화감도는 각각 0.35 와 0.01 미만으로 나타났기 때문에 MWCNT는 NFPA 499 Code에서 제시된 분진폭발 위험장소로 구분하여야 하는 가연성 분진으로 분류되지 않았다.
Dust explosion hazards are always present when combustible dusts are manufactured or handled in the process. However, industries is experiencing difficulty in establishing chemical accident prevention measures because of insufficiency of information on dust explosion characteristics of combustible dust handled in industry. In this study, we investigated experimentally dust explosion characteristics of two kinds of multi-walled carbon nano tubes (MWCNT) different in particle size distribution and examined classification of dust explosion hazardous area for MWCNT manufacturing or handling process by applying the NFPA 499 code. As a result, Pmax, Kst, LEL, MIE and MIT of MWCNT 1 having 124.2 μm median diameter are obtained 6.3 bar, 56 bar·m/s, 125 g/m3, over 1000 mJ, and over 650 °C. Pmax, Kst, LEL, MIE and MIT of MWCNT 2 having 293.5 μm median diameter are 6.2 bar, 42 bar·m/s, 100 g/m3, over 1000 mJ, and over 650 °C, respectively. MWCNT 1, 2 are not categorized as combustible dust listed in the NFPA 499 Code for classification of dust explosion hazardous area because explosion severity and ignition sensitivity of MWCNT 1, 2 are below 0.35 and 0.01, respectively.
  1. Lee JI, Jung HT, Korean Chem. Eng. Res., 46(1), 7 (2008)
  2. Seo MK, Park SJ, Korean Chem. Eng. Res., 43(3), 401 (2005)
  3. Park HS, Korean Chem. Eng. Res., 50(4), 729 (2012)
  4. Harris PJF, Carbon Nanotube and Related Structure, Cambridge University Press(2004).
  5. Lyu SC, Sok JH, Han JH, Korean Ind. Chem. News, 12(4), 1 (2009)
  6. NFPA 499, Recommended practice for the classification of combustible dusts and of hazardous (classified) locations for electrical installations in chemical process areas, National Fire Protection Association(2013).
  7. Amyotte PR, Eckhoff RK, J. Chem. Health Safety, 17(1), 15 (2010)
  8. Cashdollar KL, J. Loss Prev. Process Ind., 13(3), 183 (2000)
  9. Jaeger N, Siwek R, Chem. Eng. Prog., 95(6), 25 (1999)
  10. Eckhoff RK, Dust Explosion in the Process Industries (3rd ed.), Amsterdam: Gulf Professional Publishing(2003).
  11. Joseph G, J. Hazard. Mater., 142(3), 589 (2007)
  12. Davis SG, Hinze PC, Hansen OR, van Wingerden K, J. Loss Prev. Process Ind., 24(6), 837 (2011)
  13. Ebadat V, J. Loss Prev. Process Ind., 23(6), 907 (2010)
  14. Myers TJ, J. Hazard. Mater., 159(1), 72 (2008)
  15. EN 14034-1, Determination of Explosion Characteristics of Dust Clouds-Part 1: Determination of the Maximum Explosion Pressure Pmax of Dust Clouds, European Standard(2011).
  16. EN 14034-2, Determination of Explosion Characteristics of Dust Clouds-Part 1: Determination of the Maximum Rate of Explosion Pressure Rise (dp/dt)max of Dust Clouds, European Standard(2011).
  17. EN 14034-3, Determination of Explosion Characteristics of Dust Clouds-Part 1: Determination of the Lower Explosion Limit LEL of Dust Clouds, European Standard(2011).
  18. EN 13821, Potentially explosive atmospheres-explosion prevention and protection-Determination of minimum ignition energy of dust/air mixtures, European Standard(2002).
  19. KS C IEC 61241-2-1, Electrical apparatus for use in the presence of combustible dust-Test method for determination the minimum ignition temperature of dust, Korean Industrial Standard(2003).
  20. Han OS, Han IS, KIGAS, 18(4), 21 (2014)
  21. Proust C, Accorsi A, Dupont L, J. Loss Prev. Process Ind., 20(4-6), 599 (2007)
  22. Han OS, Korean Chem. Eng. Res., 47(5), 572 (2009)
  23. Han OS, Han IS, Choi YR, Korean Chem. Eng. Res., 47(6), 705 (2009)
  24. Gao W, Yu JL, Zhang XY, Li J, Wang B, Powder Technol., 283, 406 (2015)
  25. Wu HC, Chang RC, Hsiao HC, J. Loss Prev. Process Ind., 22(1), 21 (2009)