화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.1, 73-79, February, 2017
말레인산 무수물 그래프트 폴리프로필렌/케나프 섬유 복합체의 물성에 대한 연구
Study on Physical Properties of Maleic anhydride Grafted Polypropylene (PP)/Kenaf Fiber (KF) Composites
E-mail:
초록
이축압출기(twin screw extruder)를 이용하여 190 ℃에서 말레인산 무수물(maleic anhydride, MAH)과 스티렌 모노머(styrene monomer, SM)의 함량을 변화시켜가며 MAH와 SM이 그래프트된 폴리프로필렌(PP-g-MAH-SM) 공중합체를 제조하였다. 제조한 PP-g-MAH-SM 공중합체의 그래프트율은 비수용성 역적정을 통하여 측정하였으며, 동일한 MAH 함량에서 SM이 사용된 경우 높은 그래프트율을 나타내었다. 그래프트율에 따른 PP-g-MAH-SM/케나프섬유(kenaf fiber, KF) 복합체를 200 °C에서 제조하였고, KF의 함량은 20 wt%로 고정시켰다. 복합체에 대한 열중량분석기(TGA)의 분해 온도에 따르면, MAH 만 적용된 PP-g-MAH 보다 MAH와 SM이 함께 적용된 PP-g-MAH-SM 복합체의 열안정성이 다소 우세하였다. 복합체의 기계적 강도 또한 MAH와 SM이 함께 적용된 경우에 개선정도가 우수하였다. 계면접착정도는 파단면의 SEM과 접촉각으로 확인하였다.
Maleic anhydride (MAH) grafted polypropylene (PP-g-MAH) copolymers were prepared by changing MAH and styrene monomer (SM) content, using a twin screw extruder at 190 °C. The grafting degree was measured by non-aqueous back titration method. The grafting degree of PP-g-MAH-SM copolymer was higher than that of PP-g-MAH at the same MAH content. PP-g-MAH-SM/kenaf fiber (KF) composites were also prepared by using a PP-g-MAH as a matrix at 200 °C and the KF content was fixed at 20 wt%. Based on the degradation temperature investigated by TGA, the thermal stability of PP-g-MAH-SM/KF composites was more enhanced than that of PP-g-MAH only. Mechanical properties of the composites were also improved when MAH and SM applied together. The adhesion degree between the copolymer and KF was confirmed by both SEM pictures of the fractured surface and contact angles.
  1. Yoon S, Jeong C, Min M, Seo W, Korean Ind. Chem. News, 16(6), 26 (2013)
  2. Kim KH, Trends Metals Mater. Eng., 27, 4 (2014)
  3. Kim KH, Cho DH, Kim JH, J. Adhes. Interface, 9, 16 (2008)
  4. Rozman HD, Shannon-Ong SH, Azizah AB, Tay GS, J. Polym. Environ., 21, 1032 (2013)
  5. Ashori A, Bioresour. Technol., 99(11), 4661 (2008)
  6. Cho DH, Kim HJ, Elast. Compos., 44, 13 (2009)
  7. Shim JH, Jo DH, Yoon JS, Polym. Sci. Technol., 19(4), 299 (2008)
  8. Faruk O, Bledzki AK, Fink HP, Sain M, Prog. Polym. Sci, 37, 1552 (2012)
  9. Salleh FM, Hassan A, Yahya R, Azzahari AD, Composites B, 58, 259 (2014)
  10. Batouli SM, Zhu Y, Nar M, D’Souza NA, J. Clean. Prod., 66, 164 (2014)
  11. Shibata S, Cao Y, Fukumoto I, Polym. Test, 25, 142 (2006)
  12. Bernard M, Khalina A, Ali A, Janius R, Faizal M, Hasnah KS, Sanuddin AB, Mater. Des., 32, 1039 (2011)
  13. Asumani OML, Reid RG, Paskaramoorthy R, Compos. Pt. A-Appl. Sci. Manuf., 43, 1431 (2012)
  14. Sgriccia N, Hawley MC, Misra M, Compos. Pt. A-Appl. Sci. Manuf., 39, 1632 (2008)
  15. Li X, Tabil LG, Panigrahi S, J. Polym. Environ., 15, 25 (2007)
  16. Park JM, Quang ST, Hwang BS, DeVries KL, Compos. Sci. Technol., 66, 2686 (2006)
  17. Kim HS, Lee BH, Choi SW, Kim SM, Kim HJ, Compos. Pt. A-Appl. Sci. Manuf., 38, 1473 (2007)
  18. Lee KD, Lee WK, Auto J., 31, 44 (2009)
  19. Shi D, Yang JH, Yao ZH, Wang Y, Huang HL, Jing W, Yin JH, Costa G, Polymer, 42(13), 5549 (2001)
  20. Li Y, Xie XM, Guo BH, Polymer, 42(8), 3419 (2001)
  21. Lee JW, Kim WG, Kim YC, Polym. Korea, 38(5), 566 (2014)
  22. Lee JW, Kim JH, Kim YC, Appl. Chem. Eng., 25(3), 318 (2014)
  23. Cho KW, Li FK, Choi J, Polymer, 40(7), 1719 (1999)
  24. Lohse DJ, Milner ST, Fetters LJ, Xenidou M, Hadjichristidis N, Mendelson RA, Garcia-Franco CA, Lyon MK, Macromolecules, 35(8), 3066 (2002)