화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.1, 101-111, February, 2017
괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용
CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag
E-mail:
초록
광물탄산화 기술은 천연광물 및 산업부산물에 포함된 칼슘이나 마그네슘을 이산화탄소와 반응시켜 탄산염을 생성하는 기술로 이산화탄소를 열역학적으로 안정한 형태로 저장할 수 있는 기술이다. 본 연구는 철강슬래그를 이용한 이산화탄소 저감 및 추출 후 슬래그 재활용을 통해 환경적 부담 및 공정 비용 절감을 절감할 수 있는 광물탄산화 상용화기술 개발을 목표로 설정하였다. 추출 용매(염화암모늄)를 사용하여 괴재 및 전로슬래그로부터 칼슘을 추출하고 추출된 칼슘을 이산화탄소와 반응시켜 순도 98% 이상의 탄산칼슘을 합성하였다. 또한 칼슘 추출 후 슬래그를 건축자재(패널)로 활용하는 기술을 개발하였다. 슬래그의 칼슘 추출효율에 따라 상이한 결과를 보였지만 광물탄산화 전체 공정에 있어 중량 비(약 80-90%)를 차지하는 칼슘 추출 후 슬래그(잔여슬래그)의 활용을 통해 광물탄산화 공정으로부터 배출되는 산업부산물의 양을 최소화하고자 하였다. 잔여슬래그는 시멘트 패널 제작에 활용되는 규사미분 대체 물질로서 이용하였고 기존 시멘트 패널과 물성평가(압축강도 및 휨강도)를 상호 비교하였다. 용액 내 칼슘 농도는 유도결합 플라즈마 분광분석기(Inductively coupled plasma optical emission spectrometer, ICP-OES)를 사용하여 분석하였다. 합성한 탄산칼슘은 X선 회절 분석법(X-ray diffraction, XRD)을 이용하여 결정학적 특성 및 정량 분석하였고 주사 전자 현미경(Field emission scanning electron microscope, FE-SEM)을 사용하여 표면 형상을 확인하였다. 시멘트 패널평가는 KS L ISO 679에 준하여 패널 제작 및 패널의 압축강도와 휨강도를 측정하였다.
Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ≥ 98% purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.
  1. Jo H, Jo HY, Rha S, Lee PK, Metals, 5, 2413 (2015)
  2. Huijgen WJJ, Comans RNJ, Environ. Sci. Technol., 40, 2790 (2006)
  3. Sun Y, Yao MS, Zhang JP, Yang G, Chem. Eng. J., 173(2), 437 (2011)
  4. Dri M, Sanna A, Maroto-Valer MM, Appl. Energy, 113, 515 (2014)
  5. Bao WJ, Li HQ, Zhang Y, Ind. Eng. Chem. Res., 49(5), 2055 (2010)
  6. LACKNER KS, WENDY CH, BUTT DP, JOYCE EL, SHARP DH, Energy, 20(11), 1153 (1995)
  7. Bobicki ER, Liu QX, Xu ZH, Zeng HB, Prog. Energy Combust. Sci., 38(2), 302 (2012)
  8. Eloneva S, Said A, Fogelholm CJ, Zevenhoven R, Appl. Energy, 90(1), 329 (2012)
  9. Choi SW, Kim V, Chang WS, Kim EY, Mag. Korea Concr. Inst., 19, 28 (2007)
  10. Sudarat T, Juntima C, Charun B, Leaching of steelmaking slag using acetic acid solution and deionized water for CO2 sequestration, The 10th International PSU Engineering Conference, May 14-15, Hat Yai, Thailand (2012).
  11. Jeon JG, Jin SJ, Kim DH, J. Korean Inst. Resour. Recycl., 8, 8 (2013)
  12. Kim JM, Archit. Res., 8, 29 (2012)
  13. Lee SH, Hwang HJ, Kwon SK, J. Korean Ceram. Soc., 43, 408 (2006)
  14. Teir S, Eloneva S, Fogelholm CJ, Zevenhoven R, Energy, 32(4), 528 (2007)
  15. Youn KB, J. Korean Inst. Resour. Recycl., 22, 64 (2013)
  16. Domingo C, Loste E, Gomez-Morales J, Garcia-Carmona J, Fraile J, J. Supercrit. Fluids, 36(3), 202 (2006)
  17. Cartwright JHE, Checa AG, Gale JD, Gebauer D, Sainz-Diaz CI, Angew. Chem.-Int. Edit., 51, 11960 (2012)
  18. Jung WM, Kang SH, Kim WS, Choi CK, Chem. Eng. Sci., 55(4), 733 (2000)
  19. Andreassen JP, Growth and aggregation phenomena in precipitation of calcium carbonate, The Faculty of Natural Sciences and Technology, Trondheim, Norway (2001).
  20. Park JL, Choi SK, Kim BG, Lee JJ, J. Korean Ceram. Soc., 39, 1143 (2002)
  21. Said A, Mattila HP, Jarvinen M, Zevenhoven R, Appl. Energy, 112, 765 (2013)
  22. Kunzler C, Alves N, Pereira E, Nienczewski J, Ligabue R, Einloft S, Dullius J, Energy Procedia, 4, 1010 (2011)
  23. Park WK, Ko SJ, Lee SW, Cho KH, Ahn JW, Han C, J. Cryst. Growth, 310(10), 2593 (2008)
  24. Wolff-Boenisch D, Gislason SR, Oelkers EH, Geochim. Cosmochim. Acta., 70, 858 (2006)
  25. Han YS, Hadiko G, Fuji M, Takahashi M, J. Cryst. Growth, 289(1), 269 (2006)
  26. Luo J, Kong F, Ma X, Cryst. Growth Des., 16, 728 (2016)
  27. Ahn YJ, Jeon JH, Lee SH, Yu YH, Jeon HM, Ahn JW, Han C, J. Korean Inst. Resour. Recycl., 24, 22 (2015)
  28. Guidelines on the design of cement concrete pavement, national report, Ministry of Land, Infrastructure and Transport, Korea (2009).
  29. Neville AM, Properites of Concrete, 5th edition, Prentice Hall, New Jersey, NJ (2011).
  30. Kim JM, Choi SM, Lee HN, Li M, Cho HS, Moon WS, Proc. Korea Concr. Inst., 26(2), 317 (2014)
  31. Park JT, Oh H, J. Korea Concr. Inst., 21, 729 (2009)
  32. Ko IY, Jin BS, Kim YW, J. Korean Inst. Resour. Recycl., 12, 23 (2003)
  33. Cho HS, Mun YB, Moon WS, Park DC, Kim CH, Choi HK, J. Korean Soc. Environ. Eng., 37, 159 (2015)
  34. An YJ, Han IK, Choi JS, Bae KH, Kim HS, J. Korean Inst. Resour. Recycl., 19, 93 (2010)