화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.1, 125-131, February, 2017
공기와 물이 형성하는 계면에서 발생하는 유기적으로 기능화된 은 나노 입자들의 2차원 조립
Two-dimensional Assembly of Organically Functionalized Ag Nanoparticles at Air-water Interface
초록
본 연구에서는 유기적으로 기능화된 은 나노 입자들은 공기와 물이 형성하는 계면에서 자발적 조립 과정을 통해 새로운 2차원 상부 구조들(superstructures)을 생성하는 것을 발견하였다. 상부 구조의 분석은 금속 나노 입자의 심형과 입자계면에 결합된 유기 분자의 크기를 바꿈으로써 입자 간 특징적 상호 작용(characteristic inter-particle interaction)을 조절할 수 있고 이들 사이의 미묘한 상호 작용(subtle interplay)을 통해 은 나노 입자의 2차원 조립이 발생함을 시사한다. 본 연구를 통해 발견한 새로운 구조들은 기능성 나노 소재, 촉매 및 소자 응용 분야에 매우 중요한 잠재적 용도가 있을 것이라 사료된다.
We report organically functionalized Ag nanoparticles spontaneously form two-dimensional (2D) novel superstructures at the air-water interface. Analysis of the superstructures suggests that the 2D assembly of Ag nanoparticles originates from a subtle interplay between characteristic inter-particle interactions that can be readily controlled by changing the sizes of nanoparticle metal core and surfactants. Such structures have potential uses in nanostructured functional materials, catalysis, and device applications.
  1. Kerridge R, J. Chem. Soc., 4577 (1952)
  2. Wheeler AA, Boettinger WJ, Mcfadden GB, Phys. Rev., A, 45, 7424 (1992)
  3. Jamali S, Yamanoi M, Maia J, Soft Matter., 9, 1506 (2013)
  4. Koningsveld R, Stockmayer WH, Nies E, Polymer Phase Diagrams: A Textbook, Oxford University Press, NC, USA (2001).
  5. Matkar RA, Kyu T, J. Phys. Chem. B, 110(32), 16059 (2006)
  6. Andelman D, Brochard F, Joanny JF, J. Chem. Phys., 86, 3673 (1987)
  7. Andelman D, Brochard F, Knobler C, Rondelez F, In: Gelbart M, Bhen-Shaul A, Roux D (eds.). Micelles, Membranes, Microemulsions, and Monolayers, Springer-Verlag, Berlin, Germany (1994).
  8. Keller DJ, Mcconnell HM, Moy VT, J. Phys. Chem., 90, 2311 (1986)
  9. Mohwald H, Annu. Rev. Phys. Chem., 41, 441 (1990)
  10. Dickstein AJ, Erramilli S, Goldstein RE, Jackson DP, Langer SA, Science, 261, 1012 (1993)
  11. Rosensweig RE, Sci. Am., 247, 124 (1982)
  12. Vanderbilt D, Surf. Sci., 268, L300 (1992)
  13. Zeppenfeld P, Krzyzowski M, Romainczyk C, Comsa G, Lagally MG, Phys. Rev. Lett., 72, 2737 (1994)
  14. Chen LQ, Annu. Rev. Mater. Res., 32, 113 (2002)
  15. Ge GL, Brus L, J. Phys. Chem. B, 104(41), 9573 (2000)
  16. Rabani E, Reichman DR, Geissler PL, Brus LE, Nature, 426, 271 (2003)
  17. Steiner U, Meller A, Stavans J, Phys. Rev. Lett., 74, 4750 (1995)
  18. Karim A, Slawecki TM, Kumar SK, Douglas JF, Satija SK, Han CC, Russell TP, Liu Y, Overney R, Sokolov O, Rafailovich MH, Macromolecules, 31(3), 857 (1998)
  19. Nie ZH, Petukhova A, Kumacheva E, Nat. Nanotechnol., 5(1), 15 (2010)
  20. Yang PD, Kim F, Chemphyschem., 3, 503 (2002)
  21. Cademartiri L, Bishop KJM, Snyder PW, Ozin GA, Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., 370, 2824 (2012)
  22. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R, J. Chem. Soc.-Chem. Commun., 801 (1994)
  23. Heath JR, Knobler CM, Leff DV, J. Phys. Chem. B, 101(2), 189 (1997)
  24. Leff DV, Brandt L, Heath JR, Langmuir, 12(20), 4723 (1996)
  25. Leff DV, Ohara PC, Heath JR, Gelbart WM, J. Phys. Chem., 99(18), 7036 (1995)
  26. Markovich G, Leff DV, Chung SW, Soyez HM, Dunn B, Heath JR, Appl. Phys. Lett., 70, 3107 (1997)
  27. Chung SW, Markovich G, Heath JR, J. Phys. Chem. B, 102(35), 6685 (1998)
  28. Sear RP, Chung SW, Markovich G, Gelbart WM, Heath JR, Phys. Rev. E, 56, R6255 (1999)
  29. Ohara PC, Leff DV, Heath JR, Gelbart WM, Phys. Rev. Lett., 75, 3466 (1995)
  30. Stubican VS, Bradt RC, Annu. Rev. Mater. Sci., 11, 267 (1981)
  31. Mcconnell HM, Annu. Rev. Phys. Chem., 42, 171 (1991)
  32. Lemineur JF, Saci N, Ritcey AM, Colloids Surf. A: Physicochem. Eng. Asp., 498, 88 (2016)
  33. Yeh SW, Wei KH, Sun YS, Jeng US, Liang KS, Macromolecules, 38(15), 6559 (2005)