화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.3, 672-680, March, 2017
The effects of mineral salt catalysts on selectivity of phenolic compounds in bio-oil during microwave pyrolysis of peanut shell
E-mail:
Catalytic microwave pyrolysis of peanut shell (PT) using Fe3O4, Na2CO3, NaOH, and KOH for production of phenolic-rich bio-oil was investigated. The effects of catalyst type, pyrolysis temperature, and biomass/catalyst ratio on product distribution and composition were studied. Among four catalysts tested, Na2CO3 significantly increased the selectivity of phenolic compounds in bio-oil during microwave pyrolysis. The highest phenolics concentration of 57.36% (area) was obtained at 500 °C and PT : Na2CO3 ratio of 8 : 1. The catalytic effect to produce phenolic compounds among all the catalysts tested can be summarized in the order Na2CO3>Fe3O4>KOH>NaOH. Using KOH and NaOH as catalyst resulted in formation of bio-oil with enhanced higher heating value (HHV) and lower oxygen content, indicating that these catalysts enhanced the deoxygenation of bio-oil. The scanning-electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) analysis of char particles showed the melting of magnetite and vaporizationcondensation of mineral salt catalysts on char particle, which was attributed to extremely high local temperatures during microwave heating.
  1. Wang N, Tahmasebi A, Yu JL, Xu J, Huang F, Mamaeva A, Bioresour. Technol., 190, 89 (2015)
  2. Bridgwater AV, Meier D, Radlein D, Org. Geochem., 30, 1479 (1999)
  3. Thangalazhy-Gopakumar S, Adhikari S, Gupta RB, Tu MB, Taylor S, Bioresour. Technol., 102(12), 6742 (2011)
  4. Rocha JD, Luengo CA, Snape CE, Renew. Energy, 9, 950 (1996)
  5. Maher KD, Bressler DC, Bioresour. Technol., 98(12), 2351 (2007)
  6. Barta K, Ford PC, Acc. Chem. Res., 47, 1503 (2014)
  7. Abnisa F, Arami-Niya A, Daud WMAW, Sahu JN, Noor IM, Energy Conv. Manag., 76, 1073 (2013)
  8. Tripathi M, Sahu JN, Ganesan P, Jewaratnam J, Appl. Therm. Eng., 105, 605 (2016)
  9. Thangalazhy-Gopakumar S, Al-Nadheri WMA, Jegarajan D, Sahu JN, Mubarak NM, Nizamuddin S, Bioresour. Technol., 178, 65 (2015)
  10. Hossain MA, Jewaratnam J, Ganesan P, Sahu JN, Ramesh S, Poh SC, Energy Conv. Manag., 115, 232 (2016)
  11. Wan Y, Chen P, Zhang B, Yang C, Liu Y, Lin X, Ruan R, J. Anal. Appl. Pyrolysis, 86, 161 (2009)
  12. Wang Y, Hu X, Song Y, Min ZH, Mourant D, Li TT, Gunawan R, Li CZ, Fuel Process. Technol., 116, 234 (2013)
  13. Gunawan R, Li X, Lievens C, Gholizadeh M, Chaiwat W, Hu X, Mourant D, Bromly J, Li CZ, Fuel, 111, 709 (2013)
  14. Yin CG, Bioresour. Technol., 120, 273 (2012)
  15. Chattopadhyay J, Son JE, Pak D, Korean J. Chem. Eng., 28(8), 1677 (2011)
  16. Chen MQ, Wang J, Zhang MX, Chen MG, Zhu XF, Min FF, Tan ZC, J. Anal. Appl. Pyrolysis, 82, 145 (2008)
  17. Peng CN, Zhang GY, Yue JR, Xu GW, Fuel Process. Technol., 124, 212 (2014)
  18. Park HJ, Heo HS, Yim JH, Jeon JK, Ko YS, Kim SS, Park YK, Korean J. Chem. Eng., 27(1), 73 (2010)
  19. Miura M, Kaga H, Sakurai A, Kakuchi T, Takahashi K, J. Anal. Appl. Pyrolysis, 71, 187 (2004)
  20. Salema AA, Ani FN, Bioresour. Technol., 125, 102 (2012)
  21. Effendi A, Gerhauser H, Bridgwater AV, Renew. Sust. Energ. Rev., 12, 2092 (2008)
  22. Kim JS, Bioresour. Technol., 178, 90 (2015)
  23. Zhou S, Garcia-Perez M, Pecha B, Kersten SRA, McDonald AG, Westerhof RJM, Energy Fuels, 27(10), 5867 (2013)
  24. Aziz SMA, Wahi R, Ngaini Z, Hamdan S, Fuel Process. Technol., 106, 744 (2013)
  25. Bu Q, Lei HW, Wang L, Wei Y, Zhu L, Liu YP, Liang J, Tang JM, Bioresour. Technol., 142, 546 (2013)
  26. Lu Q, Zhang ZB, Yang XC, Dong CQ, Zhu XF, J. Anal. Appl. Pyrolysis, 104, 139 (2013)
  27. Wang N, Tahmasebi A, Yu JL, Xu J, Huang F, Mamaeva A, Bioresour. Technol., 190, 89 (2015)
  28. Meng FR, Tahmasebi A, Yu JL, Zhao H, Han YN, Lucas J, Wall T, Energy Fuels, 28(9), 5612 (2014)
  29. Yuan T, Tahmasebi A, Yu JL, Bioresour. Technol., 175, 333 (2015)
  30. Menendez JA, Juarez-Perez EJ, Ruisanchez E, Bermudez JM, Arenillas A, Carbon, 49, 346 (2011)
  31. Salema AA, Ani FN, J. Anal. Appl. Pyrolysis, 96, 162 (2012)
  32. Namazi AB, Allen DG, Jia CQ, Biomass Bioenerg., 73, 217 (2015)
  33. Bu Q, Lei HW, Ren SJ, Wang L, Zhang Q, Tang JM, Ruan RG, Bioresour. Technol., 108, 274 (2012)
  34. Mamaeva A, Tahmasebi A, Tian L, Yu JL, Bioresour. Technol., 211, 382 (2016)
  35. Omoriyekomwan JE, Tahmasebi A, Yu JL, Bioresour. Technol., 207, 188 (2016)
  36. Brammer JG, Lauer M, Bridgwater A, Energy Policy, 34(17), 2871 (2006)
  37. Kim SJ, Jung SH, Kim JS, Bioresour. Technol., 101(23), 9294 (2010)
  38. Meng FR, Yu JL, Tahmasebi A, Han YN, Zhao H, Lucas J, Wall T, Energy Fuels, 28(1), 275 (2014)
  39. Lopez MCB, Blanco CG, Martinez-Alonso A, Tascon JMD, J. Anal. Appl. Pyrolysis, 65, 313 (2002)