Journal of Physical Chemistry, Vol.99, No.2, 816-821, 1995
Dynamics of Fractional Brownian Walks
We investigate the dynamics of polymers whose solution configurations are represented by fractional Brownian walks. The calculation of the two dynamical quantities considered here, the longest relaxation time tau(r) and the intrinsic viscosity [eta], is formulated in terms of Langevin equations and is carried out within the continuum approach developed in an earlier paper. Our results for tau(r) and [eta] reproduce known scaling relations and provide reasonable numerical estimates of scaling amplitudes. The possible relevance of the work to the study of globular proteins and other compact polymeric phases is discussed.