화학공학소재연구정보센터
Applied Catalysis A: General, Vol.531, 106-118, 2017
Enhanced activity and stability of Ru-TiO2 rutile for liquid phase ketonization
Stabilization of oxygen vacancies on metal oxides (e.g. TiO2) in liquid phase is an important challenge for the utilization of these materials in artificial photosynthesis, environmental remediation and biomass conversion. To create materials with low-energy barriers for vacancies formation and high stability in aqueous environments, we have developed partially hydrophobic (contact angle >= 90) TiO2 rutile decorated with Ru nanoparticles. Negligible catalytic activity was observed when hydrophilic (contact angle 51) 5 wt.% RuiTiO(2) anatase was utilized in hot liquid water, while amphiphilic 5 wt.% RuiTiO(2) rutile (contact angle similar to 90) retained its catalytic activity. Fine-control of crystalline structure (lattice matching) of TiO2 and Ru allowed us to accelerate the rate of reaction, while the high surface hydrophobicity of the support enabled the stabilization of Ti3+ cations in aqueous and organic environments. (C) 2016 Published by Elsevier B.V.