화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.101, No.2, 783-796, 2017
Combination of zero-valent iron and anaerobic microorganisms immobilized in luffa sponge for degrading 1,1,1-trichloroethane and the relevant microbial community analysis
1,1,1-Trichloroethane (1,1,1-TCA), a dense non-aqueous phase liquid (DNAPL), is relatively slow to remediate naturally; combination of zero-valent iron and immobilized microorganism is a potential means to accelerate DNAPL biodegradation. We first adopted high density luffa sponge (HDLS) as immobilized microorganism carrier. The experimental results demonstrated that (1) the supernatant liquid microorganisms were the optimal immobilized microorganisms for HDLS and (2) the combination of zero-valent iron and immobilized microorganisms accelerated 1,1,1-TCA transformation. Furthermore, in the long-term remediation process, anaerobic microorganisms produced reductant H2S which was beneficial to zero-valent iron PRBs. Through further study of the microbial community, we found that majority of the sulfate-reducing bacteria (SRB) perfectly adapted to the process of 1,1,1-TCA co-metabolism dechlorination. Desulfobulbus and Desulfococcus potentially were the special SRB that contributed significantly to TCA co-metabolism. Additionally, 1,1,1-TCA induced the generation of new SRB and stimulated the growth of majority of dominating methanogens. The results indicated that they played a constructive role in accelerating the dechlorination of 1,1,1-TCA, reduction of sulfate, and improving the production of CH4. Consequently, combination of zero-valent iron and immobilized microorganisms for remediating groundwater by contaminated 1,1,1-TCA is a sustainable and green remediation technology. Especially for groundwater of SO4 (2-) type contaminated by 1,1,1-TCA, in the long-term course of combination degradation, cyclic utilization of H2S to prolong the service life of zero-valent iron PRBs. H-2 and CH4 generated to capture as potential energy resource. Based on this, a tentative reaction mechanism for Fe-0 biodegradation of 1,1,1-TCA was proposed.