화학공학소재연구정보센터
Applied Surface Science, Vol.392, 19-26, 2017
Novel tribological stability of the superlubricity poly (vinylphosphonic acid) (PVPA) coatings on Ti6Al4V: Velocity and load independence
High stability and movement compatibility under friction is vital to guarantee long-term use of implants in the human body. In this study, the negligible wear of the poly (vinylphosphonic acid) (PVPA)-modified Ti6Al4V/polytetrafluoroethylene (PTFE) interface in phosphate-buffered saline (PBS, PH = 7.2) were confirmed. The depth of scratches on the PVPA-modified Ti6Al4V was no more than 20 nm, while there was slight wear on the PTFE ball, as indicated by the radius of curvature being almost the same as the initial value after sliding for 2 h. In addition, it should be noted that the novel velocity and load-independent tribological behaviors are exciting. The superlubricity of the PVPA-modified Ti6Al4V can be maintained over a wide velocity range, from 0.3 mm/s to 48 mm/s, even under a high pressure of 63.49 MPa, confirming its potential application in implants. The sufficient thickness of the firm PVPA coatings with specific lubricating state and the compatibility of the two tribo-pairs in this tribological system primarily account for the novel tribological stability. This study provides insights into the tribological mechanisms of the high-stability polymer coatings. (C) 2016 Elsevier B.V. All rights reserved.