Applied Surface Science, Vol.399, 654-662, 2017
The synergetic effect of V and Fe-co-doping in TiO2 studied from the DFT plus U first-principle calculation
Based on the density functional theory (DFT + U), a detailed study on the energetic, electronic, and optical properties of Fe-, V-, and Fe & V-co-doping anatase and rutile TiO2 was performed The synergetic effect of Fe & V bimetal co-doping on the optical absorption was discussed on electronic level. Two kinds of co-dopants were considered, which included edge-shared and corner-shared co-doping. It was shown that Fe and V atoms prefer to replace Ti atom in the O-rich contions than in the Ti-rich conditions. Co-doping in anatase reduces the formation energies in both cases, while the formation energies for rutile cannot be decreased. The Bader charge analysis indicates the +3 of Fe atom and +4 of V atom, and the obvious electron exchange between Fe and V atom in co-doping cases can be identified, which indicates the presence of synergetic effect induced by co-doping. The cooperation of Fe & V co-dopants was also supported by the result of projected density of states and spin charge density differences, as the hybridization of Fe3d with V3d orbitals was seen within the TiO2 forbidden band. Different from single-dopant systems, the V3d-Fe3d co-interaction leads to the formation of some spin mid-gap states, which have an obvious effect on the optical absorptions. (C) 2016 Elsevier B.V. All rights reserved.
Keywords:Titanium dioxide;Photocatalysis;First-principle calculation;V-Fe co-doping;Synergetic effect