Applied Surface Science, Vol.391, 592-600, 2017
Effect of thermal annealing on the microstructures and photocatalytic performance of silver orthophosphate: The synergistic mechanism of Ag vacancies and metallic Ag
In this work, a simple thermal annealing route has been developed to improve the photocatalytic performance of silver orthophosphate (Ag3PO4) photocatalyst toward organic pollutants degradation under visible light irradiation. The experimental results indicated that thermal treatment of Ag3PO4 led to an obvious lattice shift towards right and significantly narrowed band gap energies due to the formation of Ag vacancies and metallic Ag during Ag3PO4 decomposition. These structural variations notably affected the photocatalytic performance of Ag3PO4 photocatalysts. The activity of the annealed samples was found to be significantly enhanced toward the degradation of MO dye. The highest activity was observed over the sample annealed at 400 degrees C, which exceeded that of pristine Ag3PO4 by a factor of about 21 times. By means of photoluminescence spectroscopy and photoelectrochemical measurements, we propose that the enormous enhancement in activity was mainly attributed to the efficient separation of photogenerated electrons and holes driven by the synergistic effect of Ag vacancies and metallic Ag. The strong interaction between annealed particles also inhibited the dissolution of Ag+ from Ag3PO4 into aqueous solution, contributing to an improved photocatalytic stability. The strategy presented here provides an ideal platform for the design of other highly efficient and stable Ag-based photocatalysts for broad applications in the field of photocatalysis. (C) 2016 Elsevier B.V. All rights reserved.