Biochemical and Biophysical Research Communications, Vol.482, No.1, 81-86, 2017
Lack of the P2X(7) receptor protects against AMD-like defects and microparticle accumulation in a chronic oxidative stress-induced mouse model of AMD
The P2X(7) receptor (P2X(7)R) is an ATP-gated ion channel that is a key player in oxidative stress under pathological conditions. The P2X(7)R is expressed in the retinal pigmented epithelium (RPE) and neural retina. Chronic oxidative stress contributes to the pathogenesis of age-related macular degeneration (AMD). Mice lacking Cu, Zn superoxide dismutase (Sod1) developed chronic oxidative stress as well as AMD-like features, but whether the P2X(7)R plays a causative role in oxidative stress-induced AMD is unknown. Thus, the main purpose of this study was to test if concurrent knockout (KO) of P2X(7)R could block AMD-like defects seen in Sod1 KO mice. Using multiple approaches, we demonstrate that Sod1 KO causes AMD-like defects, including positive staining for oxidative stress markers, 3-nitrotyrosine and carboxymethyl lysine, thinning of the RPE and retina, thickening of Bruch's membrane, presence of basal laminar and linear deposits, RPE barrier disruption and accumulation of microglia/macrophages. Moreover, we find that Sod1 KO mice accumulate more microparticles (MPs) within RPE/choroid tissues. Concurrent KO of the P2X(7)R protects against AMD-like defects and MP accumulation in Sod1 KO mice. Together, we show for the first time, that deficiency of P2X7R prevents in vivo oxidative stress-induced accumulation of MPs and AMD-like defects. This work could potentially lead to novel therapies for AMD and other oxidative stress-driven diseases. (C) 2016 The Authors. Published by Elsevier Inc.
Keywords:P2X(7) receptor;Sodi;AMD;Retinal pigmented epithelium (RPE);Oxidative stress;Microparticle (MP)