화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.491, 44-54, 2017
Bone tissue response induced by bioactive polymer functionalized Ti6Al4V surfaces: In vitro and in vivo study
Ti6Al4V is commonly used for orthopedic applications. This study was designed to test the potentially added benefit of Ti6Al4V functionalized with a bioactive polymer poly(sodium styrene sulfonate) both in vitro and in vivo. Cell-based assays with MC3T3-E1 osteoblast-like cells were used to measure the cell adhesion strength, cell spreading, focal contact formation, cell differentiation and the mineralization of extracellular matrix on grafted and ungrafted Ti6Al4V discs in combination with FBS and collagen type I. Bone morphogenetic protein-2 (BMP-2) was also included in the cell differentiation assay. Results showed that the grafted surface combined with collagen I gave superior levels in every parameter tested with cell-based assays and was almost equivalent to BMP-2 for cell differentiation. In vivo testing was conducted in rabbits (n = 42) with cylinders of grafted and ungrafted Ti6Al4V implanted in defects made to the femoral and lateral condyles and animals that were maintained to 1, 3 and 12 months. Hydroxyapatite 'coated Ti6Al4V cylinders were included as a clinical reference control. Osseointegration was assessed post-mortem using histomorphometric analysis conducted on resin sections of explanted undecalcified bone. Two histomorphometric parameters, that of bone-to-implant contact and the bone area, were analyzed by a trained observer blinded to sample identity. Results showed osseointegration on grafted Ti6Al4V was marginally better than both ungrafted and hydroxyapatite coated Ti6Al4V. Overall, the study found that the grafted Ti6Al4V significantly promoted all aspects of osteogenesis tested in vitro and, although in vivo outcomes were less compelling, histomorphometry showed osseointegration of grafted Ti6Al4V implants was equivalent or better than controls. (C) 2016 Elsevier Inc. All rights reserved.