Journal of Crystal Growth, Vol.458, 37-43, 2017
Modification of the surface morphology of 4H-SiC by addition of Sn and Al in solution growth with SiCr solvents
For solution growth of 4H-SiC with Si0.6-x-yCr0.4AlxSny solvents, the changes in surface morphology and polytype induced by the addition of Sn and Al to the Si0.6Cr0.4 solvent were investigated. Growth with Si0.6Cr0.4 solvents resulted in a rough surface covered with large macrosteps that were several micrometers high, and the polytype of the grown layer transformed to 6H and 15R-SiC. The surface roughening and polytype instability were suppressed when more than 2 at% Al was added to the SiCr0.4 solvent. We also found that the combined addition of both 2-4 at% Sn and 0.5-1 at% Al resulted in smooth surface morphology. We discussed the modification of the surface morphology of 4H-SiC caused by the additives in terms of the wetting properties of the solvents. Based on the results of experiments and thermodynamic calculations, the addition of both Sn and Al increased the liquid/solid interfacial energy. Because the two-dimensional nucleation energy increases with the interfacial energy, we conclude that smooth step flow growth of 4H-SiC was achieved by lowering the frequency of two-dimensional nucleation on the growth surface.