- Previous Article
- Next Article
- Table of Contents
Journal of Crystal Growth, Vol.460, 134-138, 2017
Growth of uniform CaGe2 films by alternating layer molecular beam epitaxy
Layered Zintl phase van der Waals (vdW) materials are of interest due to their strong spin-orbit coupling and potential for high mobility. Here, we report the successful growth of large area CaGe2 films, as a model of layered Zintl phase materials, on atomically flat Ge(111) substrates by molecular beam epitaxy (MBE) using an alternating layer growth (ALG) protocol. Reflection high energy electron diffraction (RHEED) patterns of the Ge buffer layer and CaGe2 indicate high quality two dimensional surfaces, which is further confirmed by atomic force microscopy (AFM), showing atomically flat and uniform CaGe2 films. The appearance of Laue oscillations in X-ray diffraction (XRD) and Kiessig fringes in the X-ray reflectivity (XRR), which are absent in co-deposited CaGe2, confirms the uniformity of the CaGe2 film and the smoothness of the interface. These results demonstrate a novel method of deposition of CaGe2 that could be also applied to other layered Zintl phase vdW materials. Also, the high quality of the CaGe2 film is promising for the exploration of novel properties of germanane.