화학공학소재연구정보센터
Journal of Loss Prevention in The Process Industries, Vol.44, 671-680, 2016
Application of human factors evaluation in engineering design and safe operation of dense phase ethylene treaters
Ethylene treaters are widely used in the petrochemical industry to remove impurities from ethylene feedstock imported from pipeline networks or storage caverns. The safety concerns of dense phase ethylene treaters due to the reactive and highly flammable nature of ethylene are well known and studied. Under certain conditions, ethylene may self-polymerize and decompose violently with heat release. Under other conditions, ethylene will auto-refrigerate, generating cold liquids that may cause potential brittle fracture hazards. Therefore, dense phase ethylene treaters present design challenges with the unique combination of high temperature decomposition and cold temperature brittle fracture hazards. Due to these safety concerns, it is important to select the appropriate engineering design options for dense phase ethylene treaters and the associated regeneration facilities. Totally automated treater regeneration systems add complexity and instrument maintenance requirements while manually operated systems rely heavily on operator training and procedures. Unfortunately, little or no information or design guidance is available from published research findings in the literature on the evaluation and risk assessment of current industrial design options and practices for dense phase ethylene treaters. This paper presents a systematic risk assessment method to evaluate the engineering design and safe operation options for dense phase ethylene treaters. The proposed risk assessment method integrates human factors task analysis into the traditional HAZOP, LOPA and fault tree analysis to allow evaluation of automated, manual and hybrid approaches with a goal of selecting and optimizing design options to ensure plant safety. This approach provides a realistic assessment of the operational risk and allows identification of fit-for-purpose risk reduction. Applying this systematic risk assessment approach, a simpler and more cost effective design solution can be justified, thereby avoiding the need for a high integrity protective system. (C) 2016 Elsevier Ltd. All rights reserved.