화학공학소재연구정보센터
Journal of Materials Science, Vol.52, No.3, 1486-1500, 2017
Experimental and numerical analysis of the initial stage of field-assisted sintering of metals
The initial stage of contact formation during field-activated/assisted sintering of powders is investigated experimentally and numerically for spherical particles of nickel, steel, and copper. The results of experimental studies of the contact resistance and the neck formation process due to melting/sintering in two- to three-particle systems under a single high-current pulse from a capacitor discharge are compared with results of fully coupled thermo-electrical finite-element simulations. The impact of particle size, contact geometry, and electrical load on the temperature and temperature gradient distribution during the pulse discharge is analyzed numerically for nickel spheres. The influence of the material itself is compared for nickel, steel, and copper systems.