Journal of Physical Chemistry B, Vol.120, No.50, 12928-12936, 2016
Thermodynamic Study of Molecular Interactions in Eutectic Mixtures Containing Camphene
Terpenes are an abundant and diverse class of chemicals having numerous applications in different areas of chemistry. Therefore, a detailed knowledge of physical and thermodynamic properties of terpenes and their mixtures with other compounds is highly desired. This paper reports both a thermodynamic study on solid-liquid equilibrium (SLE) phase diagrams in binary systems formed by (+/-)-camphene (a representative terpene) and one of the following solvents: n-decane, n-dodecane, 1-decanol, 1-dodecanol, phenylmethanol, 2-phenylethanol, 2-cydohexylethanol. The observed trends in the measured SLE data are discussed in terms of structure (alkyl chain length, aromacity) of the solvent and molecular interactions. Modeling of the considered SLE phase diagrams with three well-established thermodynamic models, namely, modified UNIFAC (Dortmund), perturbed-chain statistical associating fluid theory (PC-SAFT) and conductor-like screening model for real solvents (COSMO-RS), is presented. A comparative analysis of their performance is given in terms of average absolute deviations between predicted and experimental SLE temperature.