화학공학소재연구정보센터
Journal of Power Sources, Vol.340, 71-79, 2017
Energy efficiency of a concentration gradient flow battery at elevated temperatures
Fast growth of intermittent renewable energy generation introduces a need for large scale electricity storage. The Concentration Gradient Flow Battery (CGFB) is an emerging technology which combines Electrodialysis with Reverse Electrodialysis into a flow battery which is able to safely store very large amounts of energy in environmental friendly NaCl solutions. In this work, (dis)charge efficiency, energy density and power density are both theoretically and experimentally investigated. Fifteen constant current experiments (-47.5 to +37.5 A m(-2)) are performed at 40 degrees C and two experiments (-32.5 and 15 A m(-2)) at 10 and 25 degrees C. The magnitudes of the three main energy dissipation sources (internal resistance, water transport and co-ion transport) are measured and mitigation strategies are proposed. The effect of current density, state of charge and temperature on the dissipation sources is analysed. Water transport is shown to cause hysteresis, lower (dis)charge efficiencies and lower energy capacity. At constant current and with increasing temperature, internal resistance is reduced but unwanted water transport is increased. This study reports charge efficiencies up to 58% and discharge efficiencies up to 72%. Full charge or discharge of the battery is shown inefficient. The optimal operating range is therefore introduced and identified (concentration difference Delta m > 0.5 and energy efficiency eta > 0.4). (C) 2016 The Authors. Published by Elsevier B.V.