Journal of Structural Biology, Vol.197, No.2, 155-162, 2017
Imaging complement by phase-plate cryo-electron tomography from initiation to pore formation
Phase plates in cryo-electron tomography (cryoET) improve contrast, increasing the ability to discern separate molecules and molecular complexes in dense biomolecular environments. Here, we applied this new technology to the activation of the human complement system. Binding of Cl to antigen-antibody complexes initiates a cascade of proteolytic events that deposits molecules onto adjacent surfaces and terminates with the formation of membrane-attack-complex (MAC) pores in the targeted membranes. We imaged steps in this process using a Volta phase plate mounted on a Titan Krios equipped with a Falcon-II direct electron detector. The data show patches of single-layer antibodies on the surface and Cl bound to antibody platforms, with ca. similar to 4% of instances where C1r and C1s proteases have dissociated from Cl, and potentially instances of Cl transiently interacting with its substrate C4 or product C4b. Next, extensive deposition of C4b and C3b molecules is apparent, although individual molecules cannot always be properly distinguished with the current methods. Observations of MAC pores include formation of both single and composite pores, and instances of potential soluble-MAC dissociation upon failure of membrane insertion. Overall, application of the Volta phase plate cryoET markedly improved the contrast in the tomograms, which allowed for individual components to be more readily interpreted. However, variability in the phase shift induced by the phase-plate during the course of an experiment, together with incomplete sampling during tomogram acquisition, limited the interpretability of the resulting tomograms. Our studies exemplify the potential in studying molecular processes with complex spatial topologies by phase-plate cryoET. (C) 2016 Elsevier Inc. All rights reserved.