화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.138, No.49, 16120-16129, 2016
Mechanistic Studies of Pd(II)-Catalyzed Copolymerization of Ethylene and Vinylalkoxysilanes: Evidence for a beta-Silyl Elimination Chain Transfer Mechanism
Copolymerizations of ethylene with vinyltrialkoxysilanes are reported using both a "traditional" cationic Pd(II) aryldiimine catalyst, t-1 (aryl = 2,6-diisopropylphenyl), and a "sandwich-type" aryldiimine catalyst, s-2 (aryl = 8-tolylnaphthyl). Incorporation levels of vinyltrialkoxysilanes between 0.25 and 2.0 mol % were achieved with remarkably little rate retardation relative to ethylene homopolymerizations. In the case of the traditional catalyst system, molecular weights decrease as the level of comonomer increases and only one trialkoxysilyl group is incorporated per chain. Molecular weight distributions of ca. 2 are observed. For the sandwich catalyst, higher molecular weights are observed with many more trialkoxysilyl groups incorporated per chain. Polymers with molecular weight distributions of ca. 1.2-1.4 are obtained. Detailed NMR mechanistic studies have revealed the formation of intermediate pi-complexes of the type (diimine)Pd(alkyl)-(vinyltrialkoxysilane)(+). 1,2-Migratory insertions of these complexes occur with rates similar to ethylene insertion and result in formation of observable five-membered chelate intermediates. These chelates are rapidly opened with ethylene forming alkyl ethylene complexes, a requirement for chain growth. An unusual beta-silyl elimination mechanism was shown to be responsible for chain transfer and formation of low molecular weight copolymers in the traditional catalyst system, t-1. This chain transfer process is retarded in the sandwich system. Relative binding affinities of ethylene and vinyltrialkoxysilanes to the cationic palladium center have been determined. The quantitative mechanistic studies reported fully explain the features of the bulk polymerization results.