화학공학소재연구정보센터
Langmuir, Vol.32, No.51, 13687-13696, 2016
Microwave Synthesis of Chitosan Capped Silver-Dysprosium Bimetallic Nanoparticles: A Potential Nanotheranosis Device
Accurate imaging of the structural and functional state of biological targets is a critical task. To amend paucities associated, with individual imaging, there is high interest to develop a multifunctional theranostic devices for cancer diagnosis and therapy. Herein, chitosan coated silver/dysprosium bimetallic nanoparticles (BNPs) were synthesized through a green chemistry route and characterization results inferred that the BNPs are crystalline, spherical, and of size similar to 10 nm. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray photoelectron spectroscopy (XPS) confirm the reduced metallic states of Ag and Dy in nanoparticles. These BNPs demonstrate high emission in a second near-infrared (NIR-II, 1000-1400 nm) biological window on excitation at 808 nm. Moreover, magnetization and magnetic resonance imaging (MRI) studies perceive the inherent paramagnetic features of Dy component that displays dark T-2 contrast and high relaxivity. Due to high X-ray attenuation effect, BNPs exhibit better Hounsfield unit (HU) value than the reported contrast agents. BNPs unveil good biocompatibility and also express sturdy therapeutic effect in HeLa cells when tethered with doxorubicin.