화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.2, 309-317, March, 2017
침적방법을 이용한 은 카바메이트 전구체의 열환원에 의한 면 섬유/은 복합체의 제조 및 그들의 성질
Preparation of Cotton Fibers/Silver Composite by a Facile Dipping Method via Thermal Reduction Using Carbamate-type Silver Precursor and Their Properties
E-mail:
초록
이 연구의 목적은 신속하고 편리한 방법으로 면 섬유에 열처리에 의하여 안정한 은 나노입자를 형성시키는 방법을 개발하고 면 섬유의 기능을 부가하여 응용성을 증가시키는 것이다. 은의 생성은 은 카바메이트 용액에 면 섬유의 타래를 침적한 후 125 °C에서 단순히 가열하여 완결할 수 있었다. 면 섬유의 양은 은 이소프로필카바메이트 전구체의 농도를 변화하여 용이하게 조절할 수 있었다. 이렇게 생성된 면 섬유/은 표면의 형태와 정량적인 분석은 전자주사 현미경(SEM)과 에너지 분산형 X선 분석기(EDX)로 결정하였다. 섬유 표면에 생성된 은 나노입자는 30에서 200 nm의 크기를 가지며 조밀하게 생성되었으며, 이것은 125 °C의 성장 조건에서 은 나노입자의 빠른 성장과 응집에 의한 것이다. 이러한 은 나노입자들은 면 섬유/은을 3회 세척한 후에도 분리되지 않았다. 항균성 시험에서 S. aureus와 E. coli에 대한 우수한 항균 특성을 보여주었으며 은 코팅된 면 섬유는 최고 0.15 kΩ·cm의 전기 저항을 나타내었다.
The objective of this study was to develop a rapid and convenient method of producing stable silver nanoparticles (AgNPs) on cotton fibers via a thermal treatment and their application to augment the properties of cotton fibers. Silver deposition was completed by dipping a skein of cotton fiber into silver carbamate precursor solutions, followed by heating at 125 °C. The amount of AgNPs on cotton fibers was controlled by changing the concentration of silver isopropylcarbamate precursor solutions. The surface morphology and quantitative analysis of the silvered cotton fibers were determined by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX). The AgNPs between 30-200 nm were seen to be densely deposited on the fiber surface due to rapid growth and aggregation of AgNPs at the 125 °C growing condition. Moreover, the AgNPs did not leach out of the fibers after three laundry cycles. Antibacterial activity was evaluated against S. aureus and E. coli. The cotton fiber/Ag composites imparted high conductivity to the fibers, as evidenced by an electrical resistivity of 0.15 kΩ·cm.
  1. Saad ER, Hafez NM, Inter. Design J., 4, 33 (2014)
  2. Liu T, Li D, Yang D, Jiang M, Mater. Lett., 65, 628 (2011)
  3. El-Rafie MH, Shaheen TI, Mohamed AA, Hebeish A, Carbohydr. Polym., 90, 915 (2012)
  4. Gowri S, Almeida L, Amorim T, Carneiro N, Souto AP, Esteves MF, Text. Res. J., 80, 1290 (2010)
  5. Jiang SQ, Newton E, Yuen CWM, Kan CW, J. Appl. Polym. Sci., 100(6), 4383 (2006)
  6. Kelly FM, Johnston JH, ACS Appl. Mater. Interf., 3, 1083 (2011)
  7. Xue CH, Chen J, Yin W, Jia ST, Ma JZ, Appl. Surf. Sci., 258(7), 2468 (2012)
  8. Castano LM, Flatau AB, Smart Mater. Struct., 23, 053001 (2014)
  9. Liu S, Hu M, Yang J, J. Mater. Chem. C, 4, 1320 (2016)
  10. Lee J, Kwon H, Seo J, Shin S, Koo JH, Pang C, Son S, Kim JH, Jang YH, Kim DE, Lee T, Adv. Mater., 27(15), 2433 (2015)
  11. Coosemans J, Hermans B, Puers R, Sens. Actuators A-Phys., 130, 48 (2006)
  12. Linz T, Gourmelon L, Langereis G, Proceedings of the 4th international workshop on wearable and implantable body sensor networks, vol 13, p 29 (2007).
  13. Lofhede J, Seoane F, Thordstein MT, Sensors, 12, 16907 (2012)
  14. Ukkonen L, Sydanheimo L, Rahmat-Samii Y, Antennas and propagation (EUCAP), 2012 6th European conference on, IEEE, p 3450 (2012).
  15. Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, Dion G, Energy Environ. Sci., 6, 2698 (2013)
  16. Chun DTW, Gamble GR, J. Cotton Sci., 11, 154 (2007)
  17. Shahidi S, Rashidi A, Ghoranneviss M, Anvari A, Rahimi MK, Bameni MM, Wiener J, Cellulose, 17, 627 (2010)
  18. Vu NK, Zille A, Oliveira FR, Carneiro N, Souto AP, Plasma Proc. Polym., 10, 285 (2013)
  19. Yuranova T et al., J. Photochem. Photobiol. A-Chem., 161, 27 (2003)
  20. Mahltig B, Haufe H, Bottcher H, J. Mater. Chem., 15, 4385 (2005)
  21. Anuradha K, Bangal P, Madhavendra SS, Macromol. Res., 24(2), 152 (2016)
  22. He J, Kunitake T, Nakao A, Chem. Mater., 15, 4401 (2003)
  23. Potiyaraj P, Kumlangdudsana P, Dubas ST, Mater. Lett., 61, 2464 (2007)
  24. Perelshtein I, Applerot G, Perkas N, Guibert G, Mikhailov S, Gedanken A, Nanotechnol., 19, 245705 (2008)
  25. Osorio I, Igreja R, Franco R, Cortez J, Mater. Lett., 75, 200 (2012)
  26. Impellitteri CA, Tolaymat TM, Scheckel KG, J. Environ. Qual., 38, 1528 (2009)
  27. Lorenz C, Windler L, von Goetz N, Lehmann RP, Schuppler M, Hungerbuhler K, Heuberger M, Nowack B, Chemosphere, 89, 817 (2012)
  28. Liu H, Lv M, Deng B, Li J, Yu M, Huang Q, Fan C, Sci. Rep., 4, 1 (2014)
  29. Jiang T, Liu L, Yao J, Fibers Polym., 12, 620 (2011)
  30. Perelshtein I, Applerot G, Perkas N, Wehrschetz-Sigl E, Hasmann A, Guebitz GM, Gedanken A, ACS Appl. Mater. Interf., 1, 361 (2009)
  31. Zhang H, Zheng JY, J. Appl. Polym. Sci., 125(5), 3770 (2012)
  32. Hong HK, Park CK, Gong MS, Bull. Korean Chem. Soc., 31, 1252 (2010)
  33. Alessio RD, Dell'Amico B, Calderazzo F, Englert U, Guarini A, Labella L, Strasser P, Helv. Chim. Acta, 81, 219 (1998)
  34. Suslick KS, Sci. Am., 260, 80 (1989)
  35. Kim KA, Cha JR, Gong MS, Bull. Korean Chem. Soc., 34, 505 (2013)
  36. Kim KY, Gong MS, Park CK, Bull. Korean Chem. Soc., 33, 3987 (2012)
  37. Sood Y, Tyagi R, Tyagi S, Pande P, Tondon R, J. Sci. Ind. Res., 69, 300 (2010)
  38. Gorham JM, MacCuspie RI, Klein KL, Fairbrother DH, Holbrook RD, J. Nanopart. Res., 14, 1139 (2012)
  39. Gorham JM, Rohlfing AB, Lippa KA, MacCuspie RI, Hemmati A, Holbrook RD, J. Nanopart. Res., 16, 2339 (2014)
  40. Kwak WK, Oh MH, Gong MS, Carbohydr. Polym., 115, 317 (2015)
  41. Kumar V, Jolivalt C, Pulpytel J, Jafari R, Arefi-Khonsari FK, J. Biomed. Mater. Res. A, 101, 1121 (2013)
  42. Kwak WG, Oh MH, Son SY, Gong MS, Macromol. Res., 23(6), 509 (2015)
  43. Kwak WK, Cha JR, Gong MS, Fibers Polym., 17, 1146 (2016)
  44. Rantuch P, Chebert T, Cellulose Chem. Technol., 48, 461 (2014)
  45. Agnihotri S, Mukherji S, Mukherji S, Nanoscale, 5, 7328 (2013)