화학공학소재연구정보센터
Journal of Physical Chemistry, Vol.99, No.27, 11018-11027, 1995
Molecular-Dynamics Simulation of Immobilized Artificial Membranes
A 250 ps molecular dynamics (MD) simulation of an immobilized artificial membrane (IAM) surface was performed and compared to previous MD simulations of fluid membranes. Experimentally, IAM surfaces are prepared by immobilizing monolayers of membrane lipids and, consequently, IAM surfaces are distinct from the surfaces found in fluid membranes. The computer-generated IAM surface used for the simulation contained 36 phosphatidylcholine (PC) molecules and 2487 water molecules. In addition, seven straight chain alkanes were intercalated between the 36 PC molecules to simulate the experimental end capping performed during the synthesis of IAMs. The interfacial distributions of glycerol phosphocholine atoms were compared for both immobilized and fluid membranes. MD simulations indicate that the distribution of glycerol phosphocholine atoms is virtually identical in both fluid and immobilized membranes. This indicates that the polar interfacial region of the IAM surface is very similar to the polar interfacial region of fluid membranes. Water molecules are strongly polarized at the IAM interfacial region. Water polarization decays experimentally from the first hydration layer to bulk water with a decay length of 13 Angstrom. Water did not penetrate into the hydrophobic alkyl chains of the IAM interphase during the 250 ps simulation. Water diffusion near the glycerolphosphocholine head groups, calculated from the 250 ps simulation, is twice as fast in the plane of the membrane as compared to the direction that is normal to the membrane.