화학공학소재연구정보센터
Science, Vol.355, No.6322, 263-U97, 2017
Distortion of histone octamer core promotes nucleosome mobilization by a chromatin remodeler
Adenosine 5'-triphosphate (ATP)-dependent chromatin remodeling enzymes play essential biological roles by mobilizing nucleosomal DNA. Yet, how DNA is mobilized despite the steric constraints placed by the histone octamer remains unknown. Using methyl transverse relaxation-optimized nuclear magnetic resonance spectroscopy on a 450-kilodalton complex, we show that the chromatin remodeler, SNF2h, distorts the histone octamer. Binding of SNF2h in an activated ATP state changes the dynamics of buried histone residues. Preventing octamer distortion by site-specific disulfide linkages inhibits nucleosome sliding by SNF2h while promoting octamer eviction by the SWI-SNF complex, RSC. Our findings indicate that the histone core of a nucleosome is more plastic than previously imagined and that octamer deformation plays different roles based on the type of chromatin remodeler. Octamer plasticity may contribute to chromatin regulation beyond ATP-dependent remodeling.