Korean Journal of Chemical Engineering, Vol.34, No.4, 961-968, April, 2017
Simplified design of proportional-integral-derivative (PID) controller to give a time domain specification for high order processes
E-mail:
An efficient simplified method is proposed for the time domain design of industrial proportional-integralderivative (PID) controllers and lead-lag compensators for high order single input single output (SISO) systems. The proposed analytical method requires no trial error steps for a lead-lag compensator design in the time domain by using the root-locus method. A practical PID controller design method was obtained based on the corresponding lead-lag compensator to give a required time-domain specification. Simulation studies were carried out to illustrate the control performance of the controllers by the proposed method. The proposed PID controller and lead-lag compensator directly satisfied time domain control specifications such as damping ratio, maximum overshoot, settling time and steady sate error without trial and error steps. The suggested algorithm can easily be integrated with a toolbox in commercial software such as Matlab.
Keywords:PID Controller;Lead-lag Compensator;Time-domain Control Specification;Dead-time System;Root Locus
- Astrom KJ, Hagglund T, Control Eng. Practice, 9, 1163 (2001)
- Thu HCT, Lee M, Korean J. Chem. Eng., 30(12), 2151 (2013)
- Vu TNL, Lee M, Korean J. Chem. Eng., 30(3), 546 (2013)
- Horng HY, 2013 International Symposium on Next-Generation Electronics, 579 (2013).
- Franklin GF, Emami-Naeini A, Powell JD, Feedbackcontrol of dynamic systems, Pearson Prentice Hall, Upper Saddle River, N.J. (2006).
- Wang DJ, Automatica, 45(4), 1026 (2009)
- Zanasi R, Cuoghi S, Ntogramatzidis L, Int. J. Control, 84(11), 1830 (2011)
- Yeung KS, Wong KW, Chen KL, IEEE Trans. Educ., 41, 76 (1998)
- Vanavil B, Anusha AVNL, Perumalsamy M, Rao AS, Chem. Eng. Commun., 201, 1468 (2014)
- Loh AP, Cai X, Tan WW, Automatica, 40(3), 423 (2004)
- Tan N, Comput. Electrical Engineering, 29, 835 (2003)
- Xu J, 27th Chinese Control Conference, 16-18 July 2008, pp. 752-757.
- Zanasi R, Cuoghi S, IFAC Proceedings, 45, 524 (2012)
- Nie ZY, Wang QG, Wu M, He Y, Qin Q, Ind. Eng. Chem. Res., 50(3), 1330 (2011)
- Messner WC, Bedillion MD, Lu X, Karns DC, IEEE Control Syst., 27, 44 (2007)
- Ogata K, Modern control engineering, Prentice Hall, Upper Saddle River, NJ (2002).
- Ogata K, Modern control engineering, Prentice Hall, Englewood Cliffs, NJ (1990).
- Teixeira MCM, IEEE Trans. Educ., 37, 63 (1994)
- Zhang Q, Messner WC, Proc. 2011 Am. Control Conf., 693 (2011)
- O’Brien RT, Watkins JM, Proc. 2005 Am. Control Conf., 7, 4935 (2005)
- Sung SW, Lee IB, Chem. Eng. Sci., 55(10), 1883 (2000)
- Ziegler JG, Nichols NB, InTech, 42, 94 (1995)
- Kaya I, Comput. Chem. Eng., 28(3), 281 (2004)
- Astrom KJ, Hagglund T, Automatica, 20, 645 (1984)
- Gyongy IJ, Clarke DW, Control Eng. Practice, 14, 149 (2006)
- Padhy PK, Majhi S, ISA Trans., 48, 423 (2009)
- Leva A, Eur. J. Control., 3, 150 (1997)
- Papadopoulos KG, Margaris NI, J. Process Control, 23(6), 905 (2013)
- Tan KK, Lee TH, Jiang X, ISA Trans., 39, 219 (2000)
- Zhuang M, Atherton DP, Control Theory and Applications, IEE Proceedings D, 140, 216 (1993)
- Seborg DE, Edgar TF, Mellichamp DA, Process dynamics and control, Wiley, Hoboken, NJ (2004).
- Lam J, Int. J. Control, 57, 377 (1993)
- Bahill AT, IEEE Contr. Syst. Mag., 3, 16 (1983)