화학공학소재연구정보센터
Clean Technology, Vol.23, No.1, 80-89, March, 2017
기포 유동층 반응기를 이용한 하수슬러지 및 우드펠렛 혼소에 관한 연소 특성 분석 및 비교
Experimental Study of Co-firing and Emission Characteristics Fueled by Sewage Sludge and Wood Pellet in Bubbling Fluidized Bed
E-mail:
초록
하수슬러지 고형연료 및 우드펠렛의 전소 및 혼소 실험을 위해 내경 0.1 m, 높이가 1.2 m인 기포 유동층 반응기를 적용하였으며, 장치는 유동층 반응기, 연료 공급장치, 사이클론, 냉각기, 그리고 가스분석기로 구성되었다. 층 물질의 평균입자크기는 460 μm이며, 최소 유동화 속도는 0.21 m s-1이다. 실험에 사용된 연료는 국내산 하수슬러지 고형연료 및 캐나다산 우드펠렛을 적용하였으며, 우드펠렛 기준 혼합율 20, 50, 80%로 고위발열량을 기준으로 산정하였다. 실험 고정변수는 당량비 1.65, 산화제 100 L min-1, 반응기 온도 800 °C, 유동화수 4로 설정하였다. TGA 분석 결과, 하수슬러지의 고형 연료의 연소성이 우드펠렛이 비해 상대적으로 좋지 않았다. 연소시 반응기 온도는 800~900 °C 사이로 유지되었으며, 유동층 반응기에서 하수 슬러지 고형연료의 낮은 연소성으로 인해 CO가 상대적으로 높게 측정되었다. 뿐만 아니라 NOX와 SOX는 하수슬러지 고형연료 내의 질소함량으로 인해 우드펠렛에 비해 높게 측정되었으며, 혼소율이 증가될수록 CO, NOX, 그리고 SOX의 배출이 감소하였다. 혼소에 따른 회분의 거동 및 퇴적 경향에서 모든 조건에 대해 슬래깅/파일링의 가능성이 높은 것으로 분석되었다.
The bubbling fluidized bed (BFB) reactor with a diameter of 0.1 m and a height of 1.2 m was used for experimental study of co-firing and emission characteristics fueled by sewage sludge (SS) and wood pellet (WP). The facility consists of a fluidized bed reactor, feeding system, cyclone, condenser and gas analyzer, The mean particle diameter and minimum fluidization velocity are 460 μm and 0.21 m s-1 respectively. SS produced from Korea and WP from Canada were examined. The various mixing ratios of WP were 20, 50, and 80% based on HHV. The equivalence ratio of 1.65, reactor temperature of 800 °C, air flow rate of 100 L min-1, and fluidization number of 4 were fixed in the BFB experiment. In TGA, the range of combustion temperature of SS was wider than that of WP. It represents that the combustibility of WP is higher than that of SS. The BFB reactor temperature was maintained between 800 and 900 °C. CO emission of SS was high because of lower combustibility. NOX and SOX formation of SS were higher than that of WP since high nitrogen and sulfur contents of SS. CO, NOX, and SOX formation were suppressed as the mixing ratio of WP was increased. The slagging and fouling tendencies show high in all test conditions.
  1. La Nauze RD, J. Inst. Energy, 60, 66 (1987)
  2. Saxena SC, Jotshi CK, Prog. Energy Combust. Sci., 20(4), 281 (1994)
  3. Anthony EJ, Prog. Energy Combust. Sci., 21(3), 239 (1995)
  4. Amand LE, Leckner B, “Co-Combustion of Sewage Sludge with Wood/Coal in a Circulating Fluidized Bed Boiler-A Study of Gaseous Emissions,” Chalmers University of Technology, Sweden (2001).
  5. Chirone R, Salatino P, Scala F, Solimene R, Urciuolo M, Combust. Flame, 155(1-2), 21 (2008)
  6. Khan AA, “Combustion and Co-Combustion of Biomass in a Bubbling Fluidized Bed Boiler,” Ph.D. Dissertation, Technical University Delft, Netherland (2007).
  7. Liang W, Terese L, Ehsan H, Chem. Eng. Trans., 2283 (2014)
  8. Geldart D, Powder Technol., 7, 285 (1973)
  9. Wen CY, Yu YH, Chem. Eng. Prog. Symposium Series, 62, 100 (1966)
  10. Grace JR, “Fluidized-Bed Hydrodynamics,” In Handbook of Multiphase System, Ed. Hetsroni, G. Hemisphere, Washington, 8, 5-64 (1982).
  11. http://www.testo.co.kr/productdetailpage/0632+3510 (accessed Jul. 2016).
  12. Vamvuka D, Zografos D, Alevizos G, Bioresour. Technol., 99(9), 3534 (2008)
  13. Vamvuka D, Pitharoulis M, Alevizos G, Repouskou E, Pentari D, Renew. Energy, 34(12), 2662 (2009)