Korean Chemical Engineering Research, Vol.55, No.2, 237-241, April, 2017
대사공학으로 제작된 재조합 Klebsiella pneumoniae를 이용한 아세토인 생산
Acetoin Production Using Metabolically Engineered Klebsiella pneumoniae
E-mail:
초록
아세토인(acetoin)은 식품과 화학산업에서 플랫폼 물질로 이용되며 산업적으로 다양한 응용이 가능한 물질이다. 본 연구에서는 대사공학(metabolic engineering)을 이용하여 아세토인의 생산량이 증가한 재조합 Klebsiella pneumoniae를 구축하였다. 우선 2,3-부탄디올(2,3-butanediol)생산을 위해 제작되었던 재조합 K. pneumoniae (KMK-05)에서 두 가지 2,3-butanediol dehydrogenase (budC, dhaD)를 유전체에서 제거하여 아세토인 생산량을 늘리고, 전사인자 중 하나인 AcoK를 제거하여 아세토인을 분해하는 효소의 발현량을 줄였다. 그리고 NADH oxidase를 발현시켜 세포 내 산화 환원 균형(redox balance)을 맞춰 대사흐름을 개선하였다. 이렇게 대사공학을 통해 구축된 재조합 Klebsiella pneumoniae (KJW-03-nox)로 아세토인 생산량과 수율을 높였고, 36시간 동안의 유가식 배양을 진행하여 51 g/L의 아세토인 농도와 최대 생산성 2.6 g/L/h을 달성하였다.
Acetoin is variously applicable platform chemical in chemical and food industry. In this study, Klebsiella pneumoniae was engineered for acetoin production using metabolic engineering. From the recombinant Klebsiella pneumoniae (KMK-05) producing 2,3-butanediol, budC and dhaD genes encoding two 2,3-butanediol dehydrogenases were deleted to reduce 2,3-butanediol production. Furthermore, a transcriptional regulator, AcoK, was deleted to reduce the expression levels of acetoin degrading enzyme. Lastly, NADH oxidase was overexpressed for adjusting intracellular redox balance. The resulting strain (KJW-03-nox) produced considerable amount of acetoin, with concentration reaching 51 g/L with 2.6 g/L/h maximum productivity in 36 h fed-batch fermentation.
- Xiao Z, Ma C, Xu P, Lu JR, PloS. One, 4, e5627 (2009)
- Xiao Z, Lu JR, Biotechnol. Adv., 32, 492 (2014)
- Xu H, Jia SR, Liu JJ, Afr. J. Biotechnol., 10, 779 (2011)
- Sun JN, Zhang LY, Rao B, Han YB, Chu J, Zhu JW, Shen YL, Wei DZ, Biotechnol. Bioprocess. Eng., 17, 598 (2012)
- Teixeira RM, Cavalheiro D, Ninow JL, Furigo A, Braz. J. Chem. Eng., 19, 181 (2002)
- Zhang LY, Chen S, Xie HB, Tian YT, Hu KH, J. Chem. Technol. Biotechnol., 87(11), 1551 (2012)
- Wang DX, Zhou JD, Chen C, Wei D, Shi JP, Jiang B, Liu PF, Hao J, J. Ind. Microbiol. Biotechnol., 42, 1105 (2015)
- Zhang LJ, Liu Q, Ge Y, Li L, Gao C, Xu P, Ma C, Green Chem., 18, 1560 (2016)
- Jung MY, Mazumdar S, Shin SH, Yang KS, Lee J, Oh MK, Appl. Environ. Microbiol., 80, 6195 (2014)
- Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh MK, Kim YR, Lee J, Yang KS, J. Bacteriol., 194, 2736 (2012)
- Jun SA, Kong SW, Sang BI, Um Y, Korean Chem. Eng. Res., 47(6), 768 (2009)
- Ma CQ, Wang AL, Qin JY, Li LX, Ai XL, Jiang TY, Tang HZ, Xu P, Appl. Microbiol. Biotechnol., 82(1), 49 (2009)
- Jung SG, Jang JH, Kim AY, Lim MC, Kim B, Lee J, Kim YR, Appl. Microbiol. Biotechnol., 97(5), 1997 (2013)
- Izquierdo L, Coderch N, Pique N, Bedini E, Corsaro MM, Merino S, Fresno S, Tomas JM, Regue M, J. Bacteriol., 185, 7213 (2003)
- Wang Y, Tao F, Xu P, J. Biol. Chem., 289, 6080 (2014)
- Xiao ZJ, Xu P, Crit. Rev. Microbiol., 33, 127 (2007)
- Hsu JL, Peng HL, Chang HY, Biochem. Biophys. Res. Commun., 376(1), 121 (2008)
- Sun JA, Zhang LY, Rao B, Shen YL, Wei DZ, Bioresour. Technol., 119, 94 (2012)