화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.55, No.2, 237-241, April, 2017
대사공학으로 제작된 재조합 Klebsiella pneumoniae를 이용한 아세토인 생산
Acetoin Production Using Metabolically Engineered Klebsiella pneumoniae
E-mail:
초록
아세토인(acetoin)은 식품과 화학산업에서 플랫폼 물질로 이용되며 산업적으로 다양한 응용이 가능한 물질이다. 본 연구에서는 대사공학(metabolic engineering)을 이용하여 아세토인의 생산량이 증가한 재조합 Klebsiella pneumoniae를 구축하였다. 우선 2,3-부탄디올(2,3-butanediol)생산을 위해 제작되었던 재조합 K. pneumoniae (KMK-05)에서 두 가지 2,3-butanediol dehydrogenase (budC, dhaD)를 유전체에서 제거하여 아세토인 생산량을 늘리고, 전사인자 중 하나인 AcoK를 제거하여 아세토인을 분해하는 효소의 발현량을 줄였다. 그리고 NADH oxidase를 발현시켜 세포 내 산화 환원 균형(redox balance)을 맞춰 대사흐름을 개선하였다. 이렇게 대사공학을 통해 구축된 재조합 Klebsiella pneumoniae (KJW-03-nox)로 아세토인 생산량과 수율을 높였고, 36시간 동안의 유가식 배양을 진행하여 51 g/L의 아세토인 농도와 최대 생산성 2.6 g/L/h을 달성하였다.
Acetoin is variously applicable platform chemical in chemical and food industry. In this study, Klebsiella pneumoniae was engineered for acetoin production using metabolic engineering. From the recombinant Klebsiella pneumoniae (KMK-05) producing 2,3-butanediol, budC and dhaD genes encoding two 2,3-butanediol dehydrogenases were deleted to reduce 2,3-butanediol production. Furthermore, a transcriptional regulator, AcoK, was deleted to reduce the expression levels of acetoin degrading enzyme. Lastly, NADH oxidase was overexpressed for adjusting intracellular redox balance. The resulting strain (KJW-03-nox) produced considerable amount of acetoin, with concentration reaching 51 g/L with 2.6 g/L/h maximum productivity in 36 h fed-batch fermentation.
  1. Xiao Z, Ma C, Xu P, Lu JR, PloS. One, 4, e5627 (2009)
  2. Xiao Z, Lu JR, Biotechnol. Adv., 32, 492 (2014)
  3. Xu H, Jia SR, Liu JJ, Afr. J. Biotechnol., 10, 779 (2011)
  4. Sun JN, Zhang LY, Rao B, Han YB, Chu J, Zhu JW, Shen YL, Wei DZ, Biotechnol. Bioprocess. Eng., 17, 598 (2012)
  5. Teixeira RM, Cavalheiro D, Ninow JL, Furigo A, Braz. J. Chem. Eng., 19, 181 (2002)
  6. Zhang LY, Chen S, Xie HB, Tian YT, Hu KH, J. Chem. Technol. Biotechnol., 87(11), 1551 (2012)
  7. Wang DX, Zhou JD, Chen C, Wei D, Shi JP, Jiang B, Liu PF, Hao J, J. Ind. Microbiol. Biotechnol., 42, 1105 (2015)
  8. Zhang LJ, Liu Q, Ge Y, Li L, Gao C, Xu P, Ma C, Green Chem., 18, 1560 (2016)
  9. Jung MY, Mazumdar S, Shin SH, Yang KS, Lee J, Oh MK, Appl. Environ. Microbiol., 80, 6195 (2014)
  10. Shin SH, Kim S, Kim JY, Lee S, Um Y, Oh MK, Kim YR, Lee J, Yang KS, J. Bacteriol., 194, 2736 (2012)
  11. Jun SA, Kong SW, Sang BI, Um Y, Korean Chem. Eng. Res., 47(6), 768 (2009)
  12. Ma CQ, Wang AL, Qin JY, Li LX, Ai XL, Jiang TY, Tang HZ, Xu P, Appl. Microbiol. Biotechnol., 82(1), 49 (2009)
  13. Jung SG, Jang JH, Kim AY, Lim MC, Kim B, Lee J, Kim YR, Appl. Microbiol. Biotechnol., 97(5), 1997 (2013)
  14. Izquierdo L, Coderch N, Pique N, Bedini E, Corsaro MM, Merino S, Fresno S, Tomas JM, Regue M, J. Bacteriol., 185, 7213 (2003)
  15. Wang Y, Tao F, Xu P, J. Biol. Chem., 289, 6080 (2014)
  16. Xiao ZJ, Xu P, Crit. Rev. Microbiol., 33, 127 (2007)
  17. Hsu JL, Peng HL, Chang HY, Biochem. Biophys. Res. Commun., 376(1), 121 (2008)
  18. Sun JA, Zhang LY, Rao B, Shen YL, Wei DZ, Bioresour. Technol., 119, 94 (2012)