화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.5, 1305-1309, May, 2017
Controlled release of iron for activation of persulfate to oxidize orange G using iron anode
E-mail:
Persulfate (PS) can be activated by transition metal to generate a sulfate radical and oxidize persistent organic pollutants. However, activation with excessive Fe(II) causes unnecessary self-degradation of PS. In this study, Fe(II) was slowly and continuously injected electrochemically using an iron anode to minimize the self-degradation of PS. Additionally, reaction rate was controlled by adjusting the current intensity applied to the system. Total organic carbon (TOC) was analyzed as an indicator of complete mineralization because the model pollutant, orange G (OG), produced secondary pollutants after disruption of the azo bonds. The removal rate of TOC was 1/10-th of that for OG. In addition, the effect of molar ratio of OG and PS was also studied to confirm the complete mineralization of OG.
  1. Xu XR, Li HB, Wang WH, Gu JD, Chemosphere, 57, 595 (2004)
  2. Fernandez J, Bandara J, Lopez A, Buffat P, Kiwi J, Langmuir, 15(1), 185 (1999)
  3. Hsueh C, Huang Y, Wang C, Chen CY, Chemosphere, 58, 1409 (2005)
  4. Konstantinou IK, Albanis TA, Appl. Catal. B: Environ., 49(1), 1 (2004)
  5. Xie YB, Li XZ, Mater. Chem. Phys., 95(1), 39 (2006)
  6. Xu XR, Li HB, Wang WH, Gu JD, Chemosphere, 59, 893 (2005)
  7. Aleboyeh A, Olya ME, Aleboyeh H, J. Hazard. Mater., 162(2-3), 1530 (2009)
  8. Kim J, Yeom C, Kim Y, Korean J. Chem. Eng., 33(6), 1855 (2016)
  9. Yang SY, Yang X, Shao XT, Niu R, Wang LL, J. Hazard. Mater., 186(1), 659 (2011)
  10. Rodriguez S, Vasquez L, Costa D, Romero A, Santos A, Chemosphere, 101, 86 (2014)
  11. Yang Y, Pignatello JJ, Ma J, Mitch WA, Environ. Sci. Technol., 48, 2344 (2014)
  12. Huang KC, Couttenye RA, Hoag GE, Chemosphere, 49, 413 (2002)
  13. Huling SG, Pivetz BE, In-situ chemical oxidation, in, DTIC Document (2006).
  14. Xu XR, Li XZ, Sep. Purif. Technol., 72(1), 105 (2010)
  15. Son HS, Im JK, Zoh KD, Water Res., 43, 1457 (2009)
  16. Stefan MI, Bolton JR, Environ. Sci. Technol., 32, 1588 (1998)
  17. Moradi M, Ghanbari F, Manshouri M, Angali KA, Korean J. Chem. Eng., 33(2), 539 (2016)
  18. Kordkandi SA, Forouzesh M, J. Taiwan Inst. Chem. Eng., 45, 2597 (2014)
  19. Wang CW, Liang CJ, Chem. Eng. J., 254, 472 (2014)
  20. Liang HY, Zhang YQ, Huang SB, Hussain I, Chem. Eng. J., 218, 384 (2013)
  21. Han DH, Wan JQ, Ma YW, Wang Y, Huang MZ, Chen YM, Li DY, Guan ZY, Li Y, Chem. Eng. J., 256, 316 (2014)
  22. Anipsitakis GP, Dionysiou DD, Environ. Sci. Technol., 38, 3705 (2004)
  23. Liu CS, Shih K, Sun CX, Wang F, Sci. Total Environ., 416, 507 (2012)
  24. Ehl RG, Ihde AJ, J. Chem. Educ., 31, 226 (1954)
  25. Yuan SH, Liao P, Alshawabkeh AN, Environ. Sci. Technol., 48, 656 (2014)
  26. Park SM, Lee SW, Jeon PY, Baek K, Water Air Soil Pollut., 227, 462 (2016)
  27. Brillas E, Sires I, Oturan MA, Chem. Rev., 109(12), 6570 (2009)
  28. Zou J, Ma J, Chen L, Li X, Guan Y, Xie P, Pan C, Environ. Sci. Technol., 47, 11685 (2013)
  29. Yahagi T, Degawa M, Seino Y, Matsushima T, Nagao M, Sugimura T, Hashimoto Y, Cancer Lett., 1, 91 (1975)
  30. Figueroa S, Vazquez L, Alvarez-Gallegos A, Water Res., 43, 283 (2009)
  31. Kumar R, Sinha A, Korean J. Chem. Eng., 33(11), 3281 (2016)
  32. Anipsitakis GP, Dionysiou DD, Environ. Sci. Technol., 37, 4790 (2003)
  33. Viollier E, Inglett P, Hunter K, Roychoudhury A, Van Cappellen P, Appl. Geochem., 15, 785 (2000)
  34. Baek K, Ciblak A, Mao XH, Kim EJ, Alshawabkeh A, Water Res., 47, 6538 (2013)