화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.49, 69-75, May, 2017
First-principles understanding of durable titanium nitride (TiN) electrocatalyst supports
E-mail:,
Transition metal nitrides possessing superior electrical conductivity and outstanding oxidation and corrosion resistance have been described as good substitutes for carbon support materials which are vulnerable during proton exchange membrane fuel cell (PEMFC) operation due to corrosion and poor life cycles. A closer theoretical inspection of the stability and electronic properties of titanium nitridesupported Pt in comparison with carbon-supported Pt (using graphite and graphene) has been conducted using density functional theory calculations. A single Pt atom adsorbed more strongly to the TiN surface than to both graphite and graphene, causing a larger degree of charge transfer between Pt and TiN.
  1. Shao YY, Yin GP, Gao YZ, J. Power Sources, 171(2), 558 (2007)
  2. Roen LM, Paik CH, Jarvic TD, Electrochem. Solid State Lett., 7(1), A19 (2004)
  3. Yang S, Chung DY, Tak YJ, Kim J, Han H, Yu JS, Soon A, Sung YE, Lee H, Appl. Catal. B: Environ., 174-175, 35 (2015)
  4. Tan X, Wang L, Zahiri B, Kohandehghan A, Karpuzov D, Lotfabad EM, Li Z, Eikerling MH, Mitlin D, Chem. Sustain. Energy Mater., 8, 361 (2015)
  5. Kakinuma K, Wakasugi Y, Uchida M, Kamino T, Uchida H, Deki S, Watanabe M, Electrochim. Acta, 77, 279 (2012)
  6. Yang M, Cui Z, DiSalvo FJ, Phys. Chem. Chem. Phys., 15, 1088 (2013)
  7. Thotiyl MMO, Kumar TR, Sampath S, J. Phys. Chem. C, 114, 17934 (2010)
  8. Kumar R, Pasupathi S, Pollet BG, Scott K, Electrochim. Acta, 109, 365 (2013)
  9. Xiao YH, Zhan GH, Fu ZG, Pan ZC, Xiao CM, Wu SK, Chen C, Hu GH, Wei ZG, Electrochim. Acta, 141, 279 (2014)
  10. Kim H, Cho MK, Kwon JA, Jeong YH, Lee KJ, Kim NY, Kim MJ, Yoo SJ, Jang JH, Kim HJ, Nam SW, Lim DH, Cho E, Lee KY, Kim JY, Nanoscale, 7, 18429 (2015)
  11. Seifitokaldani A, Savadogo O, Perrier M, Electrochim. Acta, 141, 25 (2014)
  12. Avasarala B, Murray T, Li W, Haldar P, J. Mater. Chem., 19, 1803 (2009)
  13. Zhang RQ, Lee TH, Yu BD, Stampfl C, Soon A, Phys. Chem. Chem. Phys., 14, 16552 (2012)
  14. Lee T, Delley B, Stampfl C, Soon A, Nanoscale, 4, 5183 (2012)
  15. Zhang RQ, Kim CE, Yu BD, Stampfl C, Soon A, Phys. Chem. Chem. Phys., 15, 19450 (2013)
  16. Kresse G, Hafner J, Phys. Rev. B, 47, 558 (1993)
  17. Kresse G, Hafner J, Phys. Rev. B, 49, 14251 (1994)
  18. Kresse G, Furthmuller J, Phys. Rev. B, 54, 11169 (1996)
  19. Kresse G, Furthmuller J, Comput. Mater. Sci., 6, 15 (1996)
  20. Blochl PE, Phys. Rev. B, 50, 17953 (1994)
  21. Kresse G, Joubert D, Phys. Rev. B, 59, 1758 (1999)
  22. Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77, 3865 (1996)
  23. Grimme S, J. Comput. Chem., 27, 1787 (2006)
  24. Grimme S, Antony J, Ehrlich S, Krieg H, J. Chem. Phys., 132, 154104 (2010)
  25. Monkhorst HJ, Pack JD, Phys. Rev. B, 13, 5188 (1976)
  26. Methfessel M, Paxton AT, Phys. Rev. B, 40, 3616 (1989)
  27. Lim DH, Wilcox J, J. Phys. Chem. C, 115, 22742 (2011)
  28. Lim DH, Negreira AS, Wilcox J, J. Phys. Chem. C, 115, 8961 (2011)
  29. Tang W, Sanville E, Henkelman G, J. Phys. Condens. Matter, 21, 084204 (2009)
  30. Bader RFW, Chem. Rev., 91, 893 (1991)
  31. Pyykko P, Atsumi M, Chem.: Eur. J., 15, 186 (2009)
  32. Kokalj A, Comput. Mater. Sci., 28, 155 (2003)
  33. Grosso B, Cooper VR, Pine P, Hashibon A, Yaish Y, Adler J, Comput. Phys. Commun., 195, 1 (2015)
  34. Henkelman G, Uberuaga BP, Jonsson H, J. Chem. Phys., 113(22), 9901 (2000)
  35. Christensen AN, Acta Chem. Scand., 32A, 89 (1978)
  36. Schonberg N, Acta Chem. Scand., 8, 213 (1954)
  37. Chen D, Ma XL, Wang YM, Chen L, Phys. Rev. B, 69, 155401 (2004)
  38. Zhang RQ, Kim CE, Delley B, Stampfl C, Soon A, Phys. Chem. Chem. Phys., 14, 2462 (2012)
  39. Wang C, Dai Y, Gao H, Ruan X, Wang J, Sun B, Solid State Commun., 150, 1370 (2010)
  40. Stampfl C, Mannstadt W, Asahi R, Freeman AJ, Phys. Rev. B, 63, 155106 (2001)
  41. Gall D, Kodambaka S, Wall MA, Petrov I, Greene JE, J. Appl. Phys., 93, 9086 (2003)
  42. Gubanov VA, Ivanovsky AL, Electronic Structure of Refractory Carbides and Nitrides, Cambridge University Press, 1994.
  43. Handbook of High Temperature Compounds: Properties, Production, Applications, Hemisphere, New York, 1990.
  44. Marlo M, Milman V, Phys. Rev. B, 62, 2899 (2000)
  45. Karpan VM, Giovannetti G, Khomyakov PA, Talanana M, Starikov AA, Zwierzycki M, van den Brink J, Brocks G, Kelly PJ, Phys. Rev. Lett., 99, 176602 (2007)
  46. Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E, Science, 313, 951 (2006)
  47. Boukhvalov DW, Katsnelson MI, Lichtenstein AI, Phys. Rev. B, 77, 035427 (2008)
  48. Carlsson JM, Scheffler M, Phys. Rev. Lett., 96, 046806 (2006)
  49. Tang Y, Yang Z, Dai X, J. Chem. Phys., 135 (2011)
  50. Evans SAG, Terry JG, Plank NOV, Walton AJ, Keane LM, Campbell CJ, Ghazal P, Beattie JS, Su TJ, Crain J, Mount AR, Electrochem. Commun., 7, 125 (2005)
  51. Kou R, Shao YY, Mei DH, Nie ZM, Wang DH, Wang CM, Viswanathan VV, Park S, Aksay IA, Lin YH, Wang Y, Liu J, J. Am. Chem. Soc., 133(8), 2541 (2011)
  52. Hu L, Hu X, Wu X, Du C, Dai Y, Deng J, Phys. B: Condens. Matter, 405, 3337 (2010)
  53. Lim DH, Wilcox J, J. Phys. Chem. C, 116, 3653 (2012)
  54. Chan KT, Neaton JB, Cohen ML, Phys. Rev. B, 77, 235430 (2008)
  55. Zhou M, Zhang A, Dai Z, Zhang C, Feng YP, J. Chem. Phys., 132, 194704 (2010)
  56. Liu Y, Wilcox J, Environ. Sci. Technol., 45, 809 (2011)
  57. He L, Weniger F, Neumann H, Beller M, Angew. Chem.-Int. Edit., 55, 112582 (2016)
  58. Parr RG, Donnelly RA, Levy M, Palke WE, J. Chem. Phys., 68, 3801 (1978)
  59. Hammer B, Nørskov JK, Theoretical Surface Science and Catalysis. Calculations and Concepts, Advances in Catalysis, Academic Press, 2000, pp. 71.
  60. Shrestha S, Liu Y, Mustain WE, Catal. Rev.-Sci. Eng., 53(3), 256 (2011)
  61. Hammer B, Nørskov JK, Surf. Sci., 343, 211 (1995)