화학공학소재연구정보센터
Applied Surface Science, Vol.403, 645-651, 2017
First-principles study of H, O, and N adsorption on metal embedded carbon nanotubes
The density functional theory calculation has been conducted to investigate the structural and electronic properties, including the adsorption energies, bond structures, work functions, charge transfer behaviors, and density of states for pristine, Ni-, and Fe-embedded capped (5, 5) single-walled carbon nanotubes (SWNTs) with different coverage of atomic hydrogen, oxygen, and nitrogen adsorptions. Ni or Fe embedment enhances the adatom-SWNT interactions significantly for three kinds of gas atoms with the increases of the adsorption energies. The SWNT work function drops with H adsorption, while Ni or Fe embedment assists further the reduction. When increasing the coverage, the adsorption energy decreases and the work function climbs for O adsorption, but the nitrogen adsorption energy increases. The Bader charge transfer analysis implies that the cap possesses higher oxygen reduction activities than the tube, and the density of states analysis shows that Ni or Fe embedment deepens the C-adatom hybridizations. (C) 2017 Elsevier B.V. All rights reserved.