화학공학소재연구정보센터
Chemical Engineering Communications, Vol.204, No.4, 453-466, 2017
Effect of Impeller Spacing on the Flow Field of Yield-Pseudoplastic Fluids Generated by a Coaxial Mixing System Composed of Two Central Impellers and an Anchor
The three-dimensional flow field generated by a coaxial mixer composed of double Scaba impellers and an anchor in the mixing of the xanthan gum solution, a non-Newtonian yield-pseudoplastic fluid was investigated using the computational fluid dynamics (CFD) technique. The mixing time measurements were performed by a non-intrusive flow visualization technique called electrical resistance tomography (ERT). To evaluate the influence of the impeller spacing on the hydrodynamics of the double Scaba-anchor coaxial mixer, the upper impeller submergence was set to 0.140 m while the lower impeller clearance and the spacing between two central impellers were changed within a wide range. The experiments and simulations were conducted for both co-rotating and counter-rotating regimes at different impeller spacing. The analysis of the collected data with respect to the power number, flow number, mixing time, and pumping effectiveness proved that the co-rotating mode had superiority over the counter-rotating regime. Furthermore, the impact of the impeller spacing in the co-rotating mode was assessed with respect to the mixing time, power number, and mixing energy. The results demonstrated that a coaxial mixer with the impeller spacing of almost equal to the central impeller diameter (C-2 = 0.175 m) and the impeller clearance of C-3 = 0.185 m was the most efficient configuration compared to the other cases. Additionally, the influence of the impeller spacing on the flow pattern was assessed in terms of the radial velocity, tangential velocity, axial velocity, shear rate, and apparent viscosity profiles. When the impeller spacing (C-2) was varied, the merging flow and parallel flow patterns were observed.