Composite Interfaces, Vol.24, No.8, 779-800, 2017
Influence of heat treatment on microstructure and mechanical properties of the interface in an EN AW-6082/1.4310 composite extrusion
The presented paper deals with a unidirectional steel wire reinforced aluminum matrix composite manufactured by composite extrusion. The main objective of this work was to determine the effect of heat treatment, and the influence of long solution annealing times on the composites interface regarding microstructural changes and the resulting interface strength. For evaluation of the microstructure high resolution transmission electron microscope (TEM) investigations accompanied with electron dispersive X-ray spectroscopy (EDX) were performed. It could be shown that diffusion from the steel wire into the aluminum matrix occurs and that the diffusion paths as well as particle formation is influenced by the preceded heat treatment. Diffusion paths in the range of 40-150 nm could be observed for Al, Fe, Cr and Ni. After annealing times over 5 h an extensive growth of an intermetallic reaction layer was found. The mechanical properties of the interface were determined by push-out-tests and tensile tests radial to the interface, which provided the debonding shear strength s deb and for the latter experiment the interfacial radial strength s IR. It has become apparent that debonding shear strength is highly influenced by matrix properties. In radial tensile tests the failure is predominantly controlled by the chemical bond of the interface. It was shown that interface strength of specimen with small reaction zones of about 3 AEm were beneficial for the mechanical behavior in both loading conditions. Longer annealing times showed a drastic decrease of interface shear strength. It was concluded from EDX measurements and in comparison with literature that the reaction zone is dominated by the growth of Al5Fe2 (eta-phase).