화학공학소재연구정보센터
Electrochimica Acta, Vol.228, 528-536, 2017
Influence of nanosizing on hydrogen electrosorption properties of rhodium based nanoparticles/carbon composites
Composites made of ultra-small Rh hydride nanoparticles (NP) with controlled average sizes of 1.3, 1.9 and 2.3 nm dispersed in high surface area graphite powders were synthesized. The hydrogen electrosorption properties of the Rh nanohydride that is stable under ambient conditions were characterized by cyclic voltammetry under various scan rates in the hydrogen potential domain with the help of a cavity microelectrode. During the first cycles, an evolution of the voltammograms, characterized by an isopotential point, is observed that corresponds to a surface conversion of RhHX into Rh, the core of the NP remaining in the hydride phase. After stabilization, the voltammograms exhibit the classical hydrogen electrosoprtion peaks of Rh, but a shift to positive potentials indicates that H is more weakly bounded to the surface as the NP size decreases. The onset of the HER follows the same trend. Interestingly, it is observed that the quantity of electrosorbed hydrogen strongly increases when downsizing the NPs, with the H/Rh ratio reaching 0.47 +/- 0.11 for NPs with an average size of 13 nm. This enhancement cannot be explained just by the increase in surface area by NP downsizing. It may arise from the creation of new multi-fold adsorption surface and sub-surface sites due to the presence of many corner and edge atoms in ultra-small NPs with strong surface curvature. (C) 2017 Elsevier Ltd. All rights reserved.