화학공학소재연구정보센터
Energy, Vol.124, 198-213, 2017
Application of CVaR risk aversion approach in the dynamical scheduling optimization model for virtual power plant connected with wind-photovoltaic-energy storage system with uncertainties and demand response
Conditional value at risk (CVaR) and confidence degree theory are introduced to build scheduling model for VPP connecting with wind power plant (WPP), photovoltaic generators (PV), convention gas turbine (CGT), energy storage systems (ESSs) and incentive-based demand response (IBDR). Latin hypercube sampling method and Kantorovich distance are introduced to construct uncertainties analysis method. A risk aversion scheduling model is proposed with minimum CVaR objective considering maximum operation revenue. The IEEE30 bus system is used as simulation system. Results show: (1) Price-based demand response could realize peak load shifting, ESSs and IBDR could increase operation revenue. (2) Threshold a reflects risk attitude of decision maker, which has strong risk tolerant to gain the excess income with low a. (3) In peak period, decision maker would reduce WPP and PV for avoiding power shortage loss. Otherwise, WPP and PV would be called in priority since system reserve capacity is sufficient. (4) When 0.850.95, VPP scheduling scheme reach the most conservative, net revenue and CVaR value are (sic)8995.34 and (sic)18834. Therefore, the proposed model could describe VPP risk and provide decision support tool for decision maker. (C) 2017 Elsevier Ltd. All rights reserved.