화학공학소재연구정보센터
Inorganic Chemistry, Vol.56, No.7, 4104-4111, 2017
Enhancement of Magnetocaloric Effect through Fixation of Carbon Dioxide: Molecular Assembly from Ln(4) to Ln(4) Cluster Pairs
A series 1.Ln of tetranuclear lanthanide clusters [Ln(4)(mu(4)-O)L-2(PhCOO)(6)]center dot solvent (Ln = Gd (1.Gd), Dy (1.Dy), Ho (1.Ho)) and octanuclear lanthanide Ln(4) cluster pairs 2.Ln [Ln(8)(mu(3)-OH)(4)(CO3)(2)L-4(PhCOO)(8)]center dot solvent (Ln = Gd (2.Gd), Dy (2.Dy), Tb (2.Tb)) were assembled by using a bi-Schiff-based ligand H2L and characterized structurally and magnetically. Interestingly, the octanuclear Ln(4) cluster pairs 2.Ln are proposed to be assembled from the tetranuclear clusters 1.Ln through the uptake of CO2 from air in a more basic media. X-ray structural analyses approved the possible evolution mechanism. Magnetic studies reveal the coexistence of ferro- and anti-ferromagnetic interaction in 1.Gd and 2.Gd by simulating the direct-current magnetic susceptibility and indicate the CO32- bridges produce weak ferromagnetic interaction in 2.Gd rather than anti ferromagnetic interaction by benzoate bridges in 1.Gd. The magnitude of the magnetocaloric effect has been examined and shows that complex 2.Gd exhibits larger magnetocaloric effect than 1.Gd, which could be probably ascribed to the weak ferromagnetic interaction produced by the CO32- bridges.