International Journal of Hydrogen Energy, Vol.42, No.3, 1639-1647, 2017
Enhanced ammonia dehydrogenation over Ru/La(x)-Al2O3 (x=0-50 mol%): Structural and electronic effects of La doping
Ru (1.0 wt% loaded)-based catalysts supported on La(x)-Al2O3 (x = 0,1, 5,10, and 50 mol%) were synthesized and characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) measurement, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), scanning transmission electron microscopy (STEM), and temperature programmed reduction (TPR). The as-prepared La(x)-Al2O3 materials were found to have increased amounts of the LaAlO3 phase as the La doping level (x) increased from 0 to 50 mol%. In addition to metal-to support interactions between Ru and Al2O3, the newly formed LaAlO3 phase in the Ru catalysts was proposed to interact strongly with Ru active sites based on the XRD, H-2-TPR and XPS results. The Ru/La(x)-Al2O3 catalysts were active for the dehydrogenation of ammonia, and among them, the Ru/La(10)-Al2O3 and Ru/La(50)-Al2O3 (or Ru/LaAlO3) catalysts exhibited superior performance with >96% conversions of ammonia at 550 degrees C. When an increased Ru content (2.0 wt%) was impregnated onto La(10)-Al2O3, the dehydrogenation activity was significantly improved with nearly 100% conversion (>95%) of ammonia at 500 degrees C. This catalyst further displayed an enhanced thermal stability towards ammonia decomposition with the GHSV(NH3) of 10,000 mL/g(cat)h at 550 degrees C for >120 h. The incorporated element La is thought to play an important role in enhancing metal-support interaction, ultimately facilitating ammonia dehydrogenation even at low temperatures. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.