화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.42, No.5, 2889-2903, 2017
Kinetics study and modelling of steam methane reforming process over a NiO/Al2O3 catalyst in an adiabatic packed bed reactor
Kinetic rate data for steam methane reforming (SMR) coupled with water gas shift (WGS) over an 18 wt. % NiO/alpha-Al2O3 catalyst are presented in the temperature range of 300-700 degrees C at 1 bar. The experiments were performed in a plug flow reactor under the conditions of diffusion limitations and away from the equilibrium conditions. The kinetic model was implemented in a one-dimensional heterogeneous mathematical model of catalytic packed bed reactor, developed on gPROMS model builder 4.1.0((R)) The mathematical model of SMR process was simulated, and the model was validated by comparing the results with the experimental values. The simulation results were in excellent agreement with the experimental results. The effect of various operating parameters such as temperature, pressure and steam to carbon ratio on fuel and water conversion (%), H-2 yield (wt. % of CH4) and H-2 purity was modelled and compared with the equilibrium values. (C) 2016 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.