화학공학소재연구정보센터
Journal of Materials Science, Vol.52, No.9, 4934-4943, 2017
Experimental and theoretical analysis of electronic and optical properties of MgWO4
In the present work, magnesium tungstate (MgWO4) was synthesized by solid-state reaction method. The MgWO4 crystal was observed to exhibit wolframite-like monoclinic structure with space group P2/c (No. 13) from X-ray diffraction analysis. The crystal shapes were identified using a scanning electron microscope and ultraviolet-visible technique was employed to determine the band gap of the material which came out to be 4.17 eV. Blue photoluminescence emission was observed for this material. Electronic structures and optical properties of this crystal were determined by the first principles quantum mechanical calculations based on density functional theory. The band gap from the electronic band structure came out to be 3.39 eV, which indicated a good correlation between the experimental and theoretical band gap values. The refractive index of MgWO4 was calculated to be 1.52, and from the reflectivity curve for MgWO4, reflectivity was observed to be 77.8%. These properties of the material could find applications as scintillators, laser host materials, phosphor, and luminescent materials.