Journal of Membrane Science, Vol.527, 121-128, 2017
Thin film composite reverse osmosis membranes prepared via layered interfacial polymerization
Reverse osmosis (RO) process using a thin-film composite (TFC) membrane is a current leading technology for water desalination. The polyamide permselective layer of the TFC membrane enables salt retention and water permeation, with the ultimate goal of minimizing the permselective layer thickness for maximum energy efficiency. Yet this drive towards reducing the permselective layer thickness is greatly handicapped by the interfacial polymerization (IP) approach used to fabricate TFC membranes. We present layered interfacial polymerization (LIP) as a new paradigm for fabricating TFC membranes with unprecedented nanoscale control in the permselective layer thickness and smoothness, coupled with the advantage of industrial scale manufacturability. Membranes fabricated using LIP demonstrated high NaCl rejection necessary for water desalination, with water permeance approximate to 86% and permselectivity approximate to 450% greater than that of the membranes prepared using conventional IP and comparable water permeance and permselectivity approximate to 17% higher than that of commercial RO membranes. In addition, the unique smooth morphology of the LIP-assembled membrane surface enabled to mitigate the membrane fouling compared to the characteristic rough surface of the conventional IP-assembled membrane.
Keywords:Molecular layer-by-layer;Interfacial polymerization;Polyamide thin film composite membrane;Reverse osmosis;Water desalination