Journal of Power Sources, Vol.342, 929-938, 2017
Inhibiting the shuttle effect of Li-S battery with a graphene oxide coating separator: Performance improvement and mechanism study
In this paper, graphene oxide (GO) is integrated on commercial polypropylene separator by tape casting method and sandwiched between a sulfur cathode and the separator as a shuttle inhibitor of the Li-S battery. The issues of lithium polysulfides dissolution and shuttle effect are inhibited distinctly, and significant improvements not only in the active material utilization but also in capacity retention are observed. What's more, the improvement mechanism is studied in detail. The results demonstrate that the sulfur and polysulfide species in separator and electrolyte for the cell with GO-coating separator are much less than that with the pristine separator. The GO membrane still maintains three-dimensional porous and flexible structure with a few lithium polysulfides and Li2S2/Li2S nanoparticles anchored on the surface and inter-layers of GO sheets after long cycles. And the active materials are significantly localized within the cathode structure after GO-coating. In addition, less sulfate species, lithium salts, polysulfides and other insoluble species are identified on the cathode and separator after long-term cycling. (C) 2017 Elsevier B.V. All rights reserved.
Keywords:Graphene oxide coating separator;Lithium-sulfur battery;Shuttle effect;Oxygen-containing functional group;Polysulfide;Mechanism study