화학공학소재연구정보센터
Journal of Power Sources, Vol.347, 210-219, 2017
Highly conductive carbon black supported amorphous molybdenum disulfide for efficient hydrogen evolution reaction
Molybdenum disulfide (MoS2) is a promising electrocatalyst for hydrogen evolution reaction (HER), however, the catalytic activity of reported MoS2-based materials towards HER still can't satisfy the requirement of practical application. Herein, highly conductive carbon black (CB) supported amorphous MoS2 nanocomposite is synthesized by a facile one-pot hydrothermal process. XRD and TEM analysis proves the amorphous morphology of MoS2. XPS further confirms both hexagonal and orthorhombic S ligands exist in the amorphous MoS2. Compared with crystalline MoS2, amorphous MoS2/CB shows an onset overpotential of 78 mV and current density of 470 mA cm(-2) at the overpotential of 200 mV, which is even 50% higher than that of the commercial 20% Pt/C catalyst. Furthermore, a fairly stable performance can be achieved even after 5000 CV cycles. The outstanding HER activity and stability of the amorphous MoS2/CB nanocomposite can be attributed to these advantages: (1) amorphous structure offers more active sites in MoS2; (2) highly conductive CB reduces the charge transfer resistance (R-CT); (3) relative hydrophilic CB can largely reduce the resistance between catalyst/electrolyte interface and allows rapid mass transport; (4) electron penetration effect between amorphous MoS2 and CB increases the intrinsic activity of amorphous MoS2 by two orders of magnitude. (C) 2017 Elsevier B.V. All rights reserved.