화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.100, No.2, 458-490, 2017
Colloidal processing: enabling complex shaped ceramics with unique multiscale structures
Colloidal processing of fine ceramic powders enables the production of complex shaped ceramics with unique micro and macro structures which are not possible to produce via conventional dry processing routes. Because of this enhanced structural control and shaping capabilities, colloidal processing has been exploited to produce ceramic components with ever increasing complexity and functionalities. In this review, we revisit some of the research efforts on this topic to highlight its relevance and growing importance for the advanced manufacturing of functional ceramics. Selected examples of colloidal systems with increasing level of complexity are discussed to showcase the wide range of structures that can be generated through wet processing approaches. The historical development and background knowledge pertaining to colloids and surface interactions is first briefly reviewed. The major colloidal shape forming and additive manufacturing processes that utilize colloidal pastes and inks are then reviewed, highlighting the control of suspension rheology needed in these techniques. Next, methodologies that combine suspended particles with a pore-forming phase are discussed as a means to produce porous ceramic materials. Further control over the interactions between anisotropic particles and their alignment in suspensions can be gained via externally applied fields (such as magnetic) to produce texturally aligned green bodies. This leads to bioinspired ceramics that can programmably morph into complex shaped objects upon sintering. Hierarchical porous structures with high mechanical efficiency are also shown as an example of the multiscale designs that can be generated through advanced colloidal processing. As drying of ceramic bodies is an inevitable consequence of wet colloidal processing, the current understanding of this critical processing step is reviewed. Finally, the gaps in knowledge in these fields are discussed to provide our perspective on where the field may support advances in ceramics in the future.