Langmuir, Vol.33, No.8, 1927-1942, 2017
Mixture Effect on the Dilatation Rheology of Asphaltenes-Laden Interfaces
Asphaltenes are a solubility class of crude oils comprising polyaromatic and heterocyclic molecules with different interfacial activities. The previously neglected effects of compositional mixture on dilatational rheology are discussed in the light of diffusional relaxation models. It is demonstrated that the reported deviations from the Lucassen-van den Tempel model for a single-component solution could largely originate from a distribution in adsorption coefficients within the asphaltenes class. This particularly applies to the peculiar gel point rheology previously ascribed to asphaltenes cross-linking at the interface. Furthermore, an extensive bibliographical review shows that asphaltenes dilatational rheology data always verify the main features of diffusional relaxation, including a decrease in modulus at high bulk concentrations and phase shift values always lower than 45 degrees Using diffusional relaxation concepts, the reanalysis of the most extensive dataset so far confirmed recently published studies, showing that asphaltenes exhibit a unique equation of state (EOS) irrespective of adsorption conditions. This EOS proves to be very similar for bitumen and petroleum asphaltenes. Finally, a numerical application of a binary diffusional model proved efficient to capture both dynamic interfacial tension and dilatational rheology, with the same parameters. It appears that a minority of asphaltenes (less than 10%) have a much stronger interfacial activity than the bulk of them, as previously demonstrated by fractionation. These results open up the need for a reinterpretation of the physical mechanisms of asphaltenes adsorption in terms of classical amphiphilic behavior, with a potential impact On emulsion breaking and enhanced oil recovery strategies.