Plasma Chemistry and Plasma Processing, Vol.37, No.3, 581-600, 2017
Effect of Metal Vapours on the Radiation Properties of Thermal Plasmas
In metallurgic applications of thermal plasmas the presence of metal vapour, even in small proportion tends to increase the electron number density and to modify some basic properties such as the electrical conductivity and the radiation emission. In this paper we focus on the influence of these vapours on the radiation properties. After the definition of some necessary and basic functions and laws we briefly present the mechanisms responsible for emission and absorption of radiation in thermal plasmas. Then an important section is devoted to the role of metal vapours on the net emission coefficient which is the most popular parameter used to evaluate the radiation power losses in general models. It is shown that metal vapours increase the emission especially at low and intermediate temperatures (T < 12,000 K) and that their relative influence depends on the nature of the initial gas and of the metal itself. We list a rather important number of references presenting calculation of net emission in various gas-metal mixtures. Finally we show in a last section the influence of metal radiation on general plasma properties such as the energy transfer (other methods than the net emission coefficient), the cooling effect, the global energy balance and the heating of particulates injected in the plasma. The most spectacular effects are the increase of radiation losses in the energy balance and the complex role of the metal in the local cooling of the plasma.