Korea-Australia Rheology Journal, Vol.29, No.2, 115-127, May, 2017
Determination of continuous relaxation spectrum based on the Fuoss-Kirkwood relation and logarithmic orthogonal power-series approximation
E-mail:
In this study, we suggest a new algorithm for inferring continuous spectrum from dynamic moduli data. The algorithm is based on the Fuoss-Kirkwood relation (Fuoss and Kirkwood, 1941) and logarithmic powerseries approximation. The Fuoss-Kirkwood relation denotes the existence of the uniqueness of continuous spectrum. If we know the exact equation of dynamic moduli, then continuous spectrum can be inferred uniquely. We used the Chebyshev polynomials of the first kind to approximate dynamic moduli data in double- logarithmic scale. After the approximation, a spectrum equation can be derived by use of the complex decomposition method and the Fuoss-Kirkwood relation. We tested our algorithm to both simulated and experimental data of dynamic moduli and compared our result with those obtained from other methods such as the fixed-point iteration (Cho and Park, 2013) and cubic Hermite spline (Stadler and Bailly, 2009).
Keywords:continuous relaxation spectrum;linear viscoelasticity;Chebyshev polynomials;Fuoss-Kirkwood relation;power-series approximation
- Anderssen RS, Davies AR, de Hoog FR, Loy RJ, J. Non-Newton. Fluid Mech., 222, 132 (2015)
- Atkinson K, Han W, 2001, Theoretical Numerical Analysis, Springer, New York.
- Bae JE, Cho KS, J. Rheol., 59(4), 1081 (2015)
- Baumgartel M, Winter HH, Rheol. Acta, 28, 511 (1989)
- Baumgartel M, Winter HH, J. Non-Newton. Fluid Mech., 44, 15 (1992)
- Boas ML, 2006, Mathematical Methods in the Physical Sciences, 3rd ed., Wiley, Hoboken.
- Cho KS, Macromol. Res., 18(4), 363 (2010)
- Cho KS, J. Rheol., 57(2), 679 (2013)
- Cho KS, 2016, Viscoelasticity of Polymers, Springer, Dordrecht.
- Cho KS, Park GW, J. Rheol., 57(2), 647 (2013)
- Davies AR, Anderssen RS, J. Non-Newton. Fluid Mech., 73(1-2), 163 (1997)
- Davies AR, Anderssen RS, de Hoog FR, Goulding NJ, J. Non-Newton. Fluid Mech., 233, 107 (2016)
- Ferry JD, 1980, Viscoelastic Properties of Polymers, 3rd ed., Wiley, New York.
- Fuoss RM, Kirkwood JG, J. Am. Chem. Soc., 63, 385 (1941)
- Honerkamp J, Rheol. Acta, 28, 363 (1989)
- Honerkamp J, Weese J, Rheol. Acta, 32, 65 (1993)
- Malkin AY, Masalova I, Rheol. Acta, 40(3), 261 (2001)
- Marin G, Graessley WW, Rheol. Acta, 16, 527 (1977)
- Mason JC, Handscomb DC, 2003, Chebyshev Polynomials, Chapman and Hall/CRC, Boca Raton.
- Mason TG, Weitz DA, Phys. Rev. Lett., 74, 1250 (1995)
- McDougall I, Orbey N, Dealy JM, J. Rheol., 58(3), 779 (2014)
- Roths T, Maier D, Friedrich C, Marth M, Honerkamp J, Rheol. Acta, 39(2), 163 (2000)
- Stadler FJ, Bailly C, Rheol. Acta, 48(1), 33 (2009)
- Stadler FJ, van Ruymbeke E, Macromolecules, 43(21), 9205 (2010)
- Zorn R, J. Polym. Sci. B: Polym. Phys., 37(10), 1043 (1999)