Polymer(Korea), Vol.41, No.3, 425-432, May, 2017
무기계 내화 필러로 충전된 실리콘 고무 복합체의 열적, 물리적 특성
Thermal and Physical Properties of Silicone Rubber Composites Filled with Inorganic Fire-proof Fillers
E-mail:
초록
무기계 내화 필러는 실리콘 고무의 내화 성능 보강재로서 많은 관심을 받고 있다. 본 연구에서는 실리콘 고무 내화 필러로서 잘 알려진 수산화마그네슘(MDH), 수산화알루미늄(ATH)과 미네랄 울 2종의 실리콘 복합체를 제작해 열적, 물리적 특성을 비교 분석하였다. 가스토치 화염시험, 콘칼로리미터, TGA 분석을 통해 미네랄 울 2종의 내화 성능이 기존의 내화 필러 복합체보다 우수함을 확인하였다. 주사전자현미경(SEM), 만능재료시험기(UTM)를 통해 필러의 표면적이 큰 MDH를 실리콘 고무에 효과적으로 분산시킨 MDH/실리콘 고무 복합체가 인장, 인열, 신장율에서 우수한 특성을 나타냈고, 미네랄 울/실리콘 고무 복합체는 (MDH, ATH)/실리콘 고무 복합체에 비해 압축 강도, 경도에서 우수한 특성을 확인하였다.
Inorganic fillers have attracted a great deal of interest as reinforcing materials for fire-proof performance in silicone rubber (SR). In this study, magnesium hydroxide (MDH) and aluminium hydroxide (ATH)/SR composites, well known fire-proof materials, and mineral wool/SR composites were analyzed for thermal and physical properties. It was confirmed that mineral wool/SR composites have an improved fire-proof performance than the (MDH, ATH)/SR composites through gas torch flame test, cone calorimeter, and thermogravimetric analysis (TGA). MDH/SR shows great tensile, tear strength and elongation at break through SEM and UTM due to the fine dispersion of MDH in SR. Also, mineral wool/SR composites show compressive strength and hardness properties higher than those of (MDH, ATH)/SR composites.
- Kwon YJ, J. Korea. Concrete Inst., 17, 8 (2005)
- Kim HG, Kim JK, Jang PK, Kim BC, Kim CW, Jang IY, J. Korean Soc. Hazard Mitig., 16, 17 (2016)
- Yoon CR, Lee JH, Bang DS, Jang IY, Won JP, Park WY, Elastom. Compos., 45, 87 (2010)
- Zhuo JL, Dong J, Jiao CM, Chen XL, Plast. Rubber Compos., 42, 239 (2013)
- Jana RN, Nando GB, Khastgir D, Plast. Rubber Compos., 32, 11 (2003)
- Wang JC, Chen YH, Jin QQ, High Perform. Polym., 18, 325 (2006)
- Fang SL, Hu Y, Song L, Zhan J, He QL, J. Mater. Sci., 43(3), 1057 (2008)
- Yang L, Hu Y, Lu HD, Song L, J. Appl. Polym. Sci., 99(6), 3275 (2006)
- Buch RR, Fire Safety J., 17, 1 (1991)
- Hamdani S, Longuet C, Perrin D, Lopez-cuesta D, Ganachaud F, Polym. Degrad. Stabil., 94, 465 (2009)
- Dong WF, Zhang XH, Liu YQ, Wang QG, Gui H, Gao HM, Song ZH, Lai JM, Huang F, Qiao JL, Polymer, 47(19), 6874 (2006)
- Hornsby P, Watson C, Plast. Rub. Proc. Appl., 11, 45 (1989)
- Fang SL, Hu Y, Song L, Zhan J, He QL, J. Mater. Sci., 43(3), 1057 (2008)
- Hornsby P, Int. Mater. Rev., 46, 199 (2001)
- LU S, Hamerton I, Prog. Polym. Sci, 27, 1661 (2002)
- Wu Q, Ju J, Qu B, Polym. Int., 52, 1326 (2003)
- Pal K, Rastogi JN, J. Appl. Polym. Sci., 94(2), 407 (2004)
- Levchik S, Weil E, J. Fire Sci., 24, 345 (2006)
- Hayashida K, Tsuge S, Ohtani H, Polymer, 44(19), 5611 (2003)
- Hanu L, Simon G, Mansouri J, Burford R, Cheng Y, J. Mater. Process. Technol., 153, 401 (2004)
- Marosi G, Marton A, Anna A, Bertalan G, Marosfoi B, Szep A, Polym. Degrad. Stabil., 77, 259 (2002)
- Lee KW, A Study on the Characteristics of Fire Hazard for Plastic Materials, KOSHA, 2003.
- Zhang Y, He J, Yang R, Polym. Degrad. Stabil., 125, 140 (2016)